Finite Math Examples

Solve for k (d( natural log of k))/(dt) = natural log of A-a/(R*t)
d(ln(k))dt=ln(A)-aRt
Step 1
Simplify the expressions in the equation.
Tap for more steps...
Step 1.1
Simplify the left side.
Tap for more steps...
Step 1.1.1
Cancel the common factor of d.
Tap for more steps...
Step 1.1.1.1
Cancel the common factor.
dln(k)dt=ln(A)-aRt
Step 1.1.1.2
Rewrite the expression.
ln(k)t=ln(A)-aRt
ln(k)t=ln(A)-aRt
ln(k)t=ln(A)-aRt
Step 1.2
Simplify the right side.
Tap for more steps...
Step 1.2.1
Multiply R by t.
ln(k)t=ln(A)-aRt
ln(k)t=ln(A)-aRt
ln(k)t=ln(A)-aRt
Step 2
Multiply each term in ln(k)t=ln(A)-aRt by tR to eliminate the fractions.
Tap for more steps...
Step 2.1
Multiply each term in ln(k)t=ln(A)-aRt by tR.
ln(k)t(tR)=ln(A)(tR)-aRt(tR)
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Cancel the common factor of t.
Tap for more steps...
Step 2.2.1.1
Factor t out of tR.
ln(k)t(t(R))=ln(A)(tR)-aRt(tR)
Step 2.2.1.2
Cancel the common factor.
ln(k)t(tR)=ln(A)(tR)-aRt(tR)
Step 2.2.1.3
Rewrite the expression.
ln(k)R=ln(A)(tR)-aRt(tR)
ln(k)R=ln(A)(tR)-aRt(tR)
ln(k)R=ln(A)(tR)-aRt(tR)
Step 2.3
Simplify the right side.
Tap for more steps...
Step 2.3.1
Cancel the common factor of tR.
Tap for more steps...
Step 2.3.1.1
Move the leading negative in -aRt into the numerator.
ln(k)R=ln(A)tR+-aRt(tR)
Step 2.3.1.2
Factor tR out of Rt.
ln(k)R=ln(A)tR+-atR(1)(tR)
Step 2.3.1.3
Cancel the common factor.
ln(k)R=ln(A)tR+-atR1(tR)
Step 2.3.1.4
Rewrite the expression.
ln(k)R=ln(A)tR-a
ln(k)R=ln(A)tR-a
ln(k)R=ln(A)tR-a
ln(k)R=ln(A)tR-a
Step 3
Move all the terms containing a logarithm to the left side of the equation.
ln(k)R-ln(A)tR=-a
Step 4
Reorder factors in ln(k)R-ln(A)tR.
Rln(k)-tRln(A)=-a
Step 5
Add tRln(A) to both sides of the equation.
Rln(k)=-a+tRln(A)
Step 6
Move all the terms containing a logarithm to the left side of the equation.
Rln(k)-tRln(A)=-a
 [x2  12  π  xdx ]