Finite Math Examples

Expand Using the Binomial Theorem (2+3i)^2
(2+3i)2
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=k=0nnCk(an-kbk).
k=022!(2-k)!k!(2)2-k(3i)k
Step 2
Expand the summation.
2!(2-0)!0!(2)2-0(3i)0+2!(2-1)!1!(2)2-1(3i)1+2!(2-2)!2!(2)2-2(3i)2
Step 3
Simplify the exponents for each term of the expansion.
1(2)2(3i)0+2(2)1(3i)1+1(2)0(3i)2
Step 4
Simplify the polynomial result.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply (2)2 by 1.
(2)2(3i)0+2(2)1(3i)1+1(2)0(3i)2
Step 4.1.2
Raise 2 to the power of 2.
4(3i)0+2(2)1(3i)1+1(2)0(3i)2
Step 4.1.3
Apply the product rule to 3i.
4(30i0)+2(2)1(3i)1+1(2)0(3i)2
Step 4.1.4
Anything raised to 0 is 1.
4(1i0)+2(2)1(3i)1+1(2)0(3i)2
Step 4.1.5
Multiply i0 by 1.
4i0+2(2)1(3i)1+1(2)0(3i)2
Step 4.1.6
Anything raised to 0 is 1.
41+2(2)1(3i)1+1(2)0(3i)2
Step 4.1.7
Multiply 4 by 1.
4+2(2)1(3i)1+1(2)0(3i)2
Step 4.1.8
Evaluate the exponent.
4+22(3i)1+1(2)0(3i)2
Step 4.1.9
Multiply 2 by 2.
4+4(3i)1+1(2)0(3i)2
Step 4.1.10
Simplify.
4+4(3i)+1(2)0(3i)2
Step 4.1.11
Multiply 3 by 4.
4+12i+1(2)0(3i)2
Step 4.1.12
Multiply (2)0 by 1.
4+12i+(2)0(3i)2
Step 4.1.13
Anything raised to 0 is 1.
4+12i+1(3i)2
Step 4.1.14
Multiply (3i)2 by 1.
4+12i+(3i)2
Step 4.1.15
Apply the product rule to 3i.
4+12i+32i2
Step 4.1.16
Raise 3 to the power of 2.
4+12i+9i2
Step 4.1.17
Rewrite i2 as -1.
4+12i+9-1
Step 4.1.18
Multiply 9 by -1.
4+12i-9
4+12i-9
Step 4.2
Subtract 9 from 4.
-5+12i
-5+12i
 [x2  12  π  xdx ]