Enter a problem...
Finite Math Examples
(2,0)(2,0) , (3,-2)(3,−2) , (1,-2)(1,−2)
Step 1
Use the standard form of a quadratic equation y=ax2+bx+cy=ax2+bx+c as the starting point for finding the equation through the three points.
y=ax2+bx+cy=ax2+bx+c
Step 2
Create a system of equations by substituting the xx and yy values of each point into the standard formula of a quadratic equation to create the three equation system.
0=a(2)2+b(2)+c,-2=a(3)2+b(3)+c,-2=a(1)2+b(1)+c0=a(2)2+b(2)+c,−2=a(3)2+b(3)+c,−2=a(1)2+b(1)+c
Step 3
Step 3.1
Solve for aa in -2=a+b+c−2=a+b+c.
Step 3.1.1
Rewrite the equation as a+b+c=-2a+b+c=−2.
a+b+c=-2a+b+c=−2
0=a⋅22+b(2)+c0=a⋅22+b(2)+c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
Step 3.1.2
Move all terms not containing aa to the right side of the equation.
Step 3.1.2.1
Subtract bb from both sides of the equation.
a+c=-2-ba+c=−2−b
0=a⋅22+b(2)+c0=a⋅22+b(2)+c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
Step 3.1.2.2
Subtract cc from both sides of the equation.
a=-2-b-ca=−2−b−c
0=a⋅22+b(2)+c0=a⋅22+b(2)+c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
a=-2-b-ca=−2−b−c
0=a⋅22+b(2)+c0=a⋅22+b(2)+c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
a=-2-b-ca=−2−b−c
0=a⋅22+b(2)+c0=a⋅22+b(2)+c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
Step 3.2
Replace all occurrences of aa with -2-b-c−2−b−c in each equation.
Step 3.2.1
Replace all occurrences of aa in 0=a⋅22+b(2)+c0=a⋅22+b(2)+c with -2-b-c−2−b−c.
0=(-2-b-c)⋅22+b(2)+c0=(−2−b−c)⋅22+b(2)+c
a=-2-b-ca=−2−b−c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify (-2-b-c)⋅22+b(2)+c(−2−b−c)⋅22+b(2)+c.
Step 3.2.2.1.1
Simplify each term.
Step 3.2.2.1.1.1
Raise 22 to the power of 22.
0=(-2-b-c)⋅4+b(2)+c0=(−2−b−c)⋅4+b(2)+c
a=-2-b-ca=−2−b−c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
Step 3.2.2.1.1.2
Apply the distributive property.
0=-2⋅4-b⋅4-c⋅4+b(2)+c0=−2⋅4−b⋅4−c⋅4+b(2)+c
a=-2-b-ca=−2−b−c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
Step 3.2.2.1.1.3
Simplify.
Step 3.2.2.1.1.3.1
Multiply -2−2 by 44.
0=-8-b⋅4-c⋅4+b(2)+c0=−8−b⋅4−c⋅4+b(2)+c
a=-2-b-ca=−2−b−c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
Step 3.2.2.1.1.3.2
Multiply 44 by -1−1.
0=-8-4b-c⋅4+b(2)+c0=−8−4b−c⋅4+b(2)+c
a=-2-b-ca=−2−b−c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
Step 3.2.2.1.1.3.3
Multiply 44 by -1−1.
0=-8-4b-4c+b(2)+c0=−8−4b−4c+b(2)+c
a=-2-b-ca=−2−b−c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
0=-8-4b-4c+b(2)+c0=−8−4b−4c+b(2)+c
a=-2-b-ca=−2−b−c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
Step 3.2.2.1.1.4
Move 22 to the left of bb.
0=-8-4b-4c+2b+c0=−8−4b−4c+2b+c
a=-2-b-ca=−2−b−c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
0=-8-4b-4c+2b+c0=−8−4b−4c+2b+c
a=-2-b-ca=−2−b−c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
Step 3.2.2.1.2
Simplify by adding terms.
Step 3.2.2.1.2.1
Add -4b−4b and 2b2b.
0=-8-2b-4c+c0=−8−2b−4c+c
a=-2-b-ca=−2−b−c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
Step 3.2.2.1.2.2
Add -4c−4c and cc.
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
-2=a⋅32+b(3)+c−2=a⋅32+b(3)+c
Step 3.2.3
Replace all occurrences of aa in -2=a⋅32+b(3)+c−2=a⋅32+b(3)+c with -2-b-c−2−b−c.
-2=(-2-b-c)⋅32+b(3)+c−2=(−2−b−c)⋅32+b(3)+c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
Step 3.2.4
Simplify the right side.
Step 3.2.4.1
Simplify (-2-b-c)⋅32+b(3)+c(−2−b−c)⋅32+b(3)+c.
Step 3.2.4.1.1
Simplify each term.
Step 3.2.4.1.1.1
Raise 33 to the power of 22.
-2=(-2-b-c)⋅9+b(3)+c−2=(−2−b−c)⋅9+b(3)+c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
Step 3.2.4.1.1.2
Apply the distributive property.
-2=-2⋅9-b⋅9-c⋅9+b(3)+c−2=−2⋅9−b⋅9−c⋅9+b(3)+c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
Step 3.2.4.1.1.3
Simplify.
Step 3.2.4.1.1.3.1
Multiply -2−2 by 99.
-2=-18-b⋅9-c⋅9+b(3)+c−2=−18−b⋅9−c⋅9+b(3)+c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
Step 3.2.4.1.1.3.2
Multiply 99 by -1−1.
-2=-18-9b-c⋅9+b(3)+c−2=−18−9b−c⋅9+b(3)+c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
Step 3.2.4.1.1.3.3
Multiply 99 by -1−1.
-2=-18-9b-9c+b(3)+c−2=−18−9b−9c+b(3)+c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
-2=-18-9b-9c+b(3)+c−2=−18−9b−9c+b(3)+c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
Step 3.2.4.1.1.4
Move 33 to the left of bb.
-2=-18-9b-9c+3b+c−2=−18−9b−9c+3b+c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
-2=-18-9b-9c+3b+c−2=−18−9b−9c+3b+c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
Step 3.2.4.1.2
Simplify by adding terms.
Step 3.2.4.1.2.1
Add -9b−9b and 3b3b.
-2=-18-6b-9c+c−2=−18−6b−9c+c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
Step 3.2.4.1.2.2
Add -9c−9c and cc.
-2=-18-6b-8c−2=−18−6b−8c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
-2=-18-6b-8c−2=−18−6b−8c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
-2=-18-6b-8c−2=−18−6b−8c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
-2=-18-6b-8c−2=−18−6b−8c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
-2=-18-6b-8c−2=−18−6b−8c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
Step 3.3
Solve for bb in -2=-18-6b-8c−2=−18−6b−8c.
Step 3.3.1
Rewrite the equation as -18-6b-8c=-2−18−6b−8c=−2.
-18-6b-8c=-2−18−6b−8c=−2
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
Step 3.3.2
Move all terms not containing bb to the right side of the equation.
Step 3.3.2.1
Add 1818 to both sides of the equation.
-6b-8c=-2+18−6b−8c=−2+18
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
Step 3.3.2.2
Add 8c8c to both sides of the equation.
-6b=-2+18+8c−6b=−2+18+8c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
Step 3.3.2.3
Add -2−2 and 1818.
-6b=16+8c−6b=16+8c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
-6b=16+8c−6b=16+8c
0=-8-2b-3c0=−8−2b−3c
a=-2-b-ca=−2−b−c
Step 3.3.3
Divide each term in -6b=16+8c−6b=16+8c by -6−6 and simplify.
Step 3.3.3.1
Divide each term in -6b=16+8c−6b=16+8c by -6−6.
-6b-6=16-6+8c-6−6b−6=16−6+8c−6
0=-8-2b-3c0=−8−2b−3c
a=-2-b-c
Step 3.3.3.2
Simplify the left side.
Step 3.3.3.2.1
Cancel the common factor of -6.
Step 3.3.3.2.1.1
Cancel the common factor.
-6b-6=16-6+8c-6
0=-8-2b-3c
a=-2-b-c
Step 3.3.3.2.1.2
Divide b by 1.
b=16-6+8c-6
0=-8-2b-3c
a=-2-b-c
b=16-6+8c-6
0=-8-2b-3c
a=-2-b-c
b=16-6+8c-6
0=-8-2b-3c
a=-2-b-c
Step 3.3.3.3
Simplify the right side.
Step 3.3.3.3.1
Simplify each term.
Step 3.3.3.3.1.1
Cancel the common factor of 16 and -6.
Step 3.3.3.3.1.1.1
Factor 2 out of 16.
b=2(8)-6+8c-6
0=-8-2b-3c
a=-2-b-c
Step 3.3.3.3.1.1.2
Cancel the common factors.
Step 3.3.3.3.1.1.2.1
Factor 2 out of -6.
b=2⋅82⋅-3+8c-6
0=-8-2b-3c
a=-2-b-c
Step 3.3.3.3.1.1.2.2
Cancel the common factor.
b=2⋅82⋅-3+8c-6
0=-8-2b-3c
a=-2-b-c
Step 3.3.3.3.1.1.2.3
Rewrite the expression.
b=8-3+8c-6
0=-8-2b-3c
a=-2-b-c
b=8-3+8c-6
0=-8-2b-3c
a=-2-b-c
b=8-3+8c-6
0=-8-2b-3c
a=-2-b-c
Step 3.3.3.3.1.2
Move the negative in front of the fraction.
b=-83+8c-6
0=-8-2b-3c
a=-2-b-c
Step 3.3.3.3.1.3
Cancel the common factor of 8 and -6.
Step 3.3.3.3.1.3.1
Factor 2 out of 8c.
b=-83+2(4c)-6
0=-8-2b-3c
a=-2-b-c
Step 3.3.3.3.1.3.2
Cancel the common factors.
Step 3.3.3.3.1.3.2.1
Factor 2 out of -6.
b=-83+2(4c)2(-3)
0=-8-2b-3c
a=-2-b-c
Step 3.3.3.3.1.3.2.2
Cancel the common factor.
b=-83+2(4c)2⋅-3
0=-8-2b-3c
a=-2-b-c
Step 3.3.3.3.1.3.2.3
Rewrite the expression.
b=-83+4c-3
0=-8-2b-3c
a=-2-b-c
b=-83+4c-3
0=-8-2b-3c
a=-2-b-c
b=-83+4c-3
0=-8-2b-3c
a=-2-b-c
Step 3.3.3.3.1.4
Move the negative in front of the fraction.
b=-83-4c3
0=-8-2b-3c
a=-2-b-c
b=-83-4c3
0=-8-2b-3c
a=-2-b-c
b=-83-4c3
0=-8-2b-3c
a=-2-b-c
b=-83-4c3
0=-8-2b-3c
a=-2-b-c
b=-83-4c3
0=-8-2b-3c
a=-2-b-c
Step 3.4
Replace all occurrences of b with -83-4c3 in each equation.
Step 3.4.1
Replace all occurrences of b in 0=-8-2b-3c with -83-4c3.
0=-8-2(-83-4c3)-3c
b=-83-4c3
a=-2-b-c
Step 3.4.2
Simplify the right side.
Step 3.4.2.1
Simplify -8-2(-83-4c3)-3c.
Step 3.4.2.1.1
Simplify each term.
Step 3.4.2.1.1.1
Apply the distributive property.
0=-8-2(-83)-2(-4c3)-3c
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.1.2
Multiply -2(-83).
Step 3.4.2.1.1.2.1
Multiply -1 by -2.
0=-8+2(83)-2(-4c3)-3c
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.1.2.2
Combine 2 and 83.
0=-8+2⋅83-2(-4c3)-3c
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.1.2.3
Multiply 2 by 8.
0=-8+163-2(-4c3)-3c
b=-83-4c3
a=-2-b-c
0=-8+163-2(-4c3)-3c
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.1.3
Multiply -2(-4c3).
Step 3.4.2.1.1.3.1
Multiply -1 by -2.
0=-8+163+2(4c3)-3c
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.1.3.2
Combine 2 and 4c3.
0=-8+163+2(4c)3-3c
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.1.3.3
Multiply 4 by 2.
0=-8+163+8c3-3c
b=-83-4c3
a=-2-b-c
0=-8+163+8c3-3c
b=-83-4c3
a=-2-b-c
0=-8+163+8c3-3c
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.2
To write -8 as a fraction with a common denominator, multiply by 33.
0=-8⋅33+163+8c3-3c
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.3
Combine -8 and 33.
0=-8⋅33+163+8c3-3c
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.4
Combine the numerators over the common denominator.
0=-8⋅3+163+8c3-3c
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.5
Simplify the numerator.
Step 3.4.2.1.5.1
Multiply -8 by 3.
0=-24+163+8c3-3c
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.5.2
Add -24 and 16.
0=-83+8c3-3c
b=-83-4c3
a=-2-b-c
0=-83+8c3-3c
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.6
Move the negative in front of the fraction.
0=-83+8c3-3c
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.7
To write -3c as a fraction with a common denominator, multiply by 33.
0=-83+8c3-3c⋅33
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.8
Combine -3c and 33.
0=-83+8c3+-3c⋅33
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.9
Combine the numerators over the common denominator.
0=-83+8c-3c⋅33
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.10
Combine the numerators over the common denominator.
0=-8+8c-3c⋅33
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.11
Multiply 3 by -3.
0=-8+8c-9c3
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.12
Subtract 9c from 8c.
0=-8-c3
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.13
Rewrite -8 as -1(8).
0=-1⋅8-c3
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.14
Factor -1 out of -c.
0=-1⋅8-(c)3
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.15
Factor -1 out of -1(8)-(c).
0=-1(8+c)3
b=-83-4c3
a=-2-b-c
Step 3.4.2.1.16
Move the negative in front of the fraction.
0=-8+c3
b=-83-4c3
a=-2-b-c
0=-8+c3
b=-83-4c3
a=-2-b-c
0=-8+c3
b=-83-4c3
a=-2-b-c
Step 3.4.3
Replace all occurrences of b in a=-2-b-c with -83-4c3.
a=-2-(-83-4c3)-c
0=-8+c3
b=-83-4c3
Step 3.4.4
Simplify the right side.
Step 3.4.4.1
Simplify -2-(-83-4c3)-c.
Step 3.4.4.1.1
Simplify each term.
Step 3.4.4.1.1.1
Apply the distributive property.
a=-2+83+4c3-c
0=-8+c3
b=-83-4c3
Step 3.4.4.1.1.2
Multiply --83.
Step 3.4.4.1.1.2.1
Multiply -1 by -1.
a=-2+1(83)+4c3-c
0=-8+c3
b=-83-4c3
Step 3.4.4.1.1.2.2
Multiply 83 by 1.
a=-2+83+4c3-c
0=-8+c3
b=-83-4c3
a=-2+83+4c3-c
0=-8+c3
b=-83-4c3
Step 3.4.4.1.1.3
Multiply --4c3.
Step 3.4.4.1.1.3.1
Multiply -1 by -1.
a=-2+83+1(4c3)-c
0=-8+c3
b=-83-4c3
Step 3.4.4.1.1.3.2
Multiply 4c3 by 1.
a=-2+83+4c3-c
0=-8+c3
b=-83-4c3
a=-2+83+4c3-c
0=-8+c3
b=-83-4c3
a=-2+83+4c3-c
0=-8+c3
b=-83-4c3
Step 3.4.4.1.2
To write -2 as a fraction with a common denominator, multiply by 33.
a=-2⋅33+83+4c3-c
0=-8+c3
b=-83-4c3
Step 3.4.4.1.3
Combine -2 and 33.
a=-2⋅33+83+4c3-c
0=-8+c3
b=-83-4c3
Step 3.4.4.1.4
Combine the numerators over the common denominator.
a=-2⋅3+83+4c3-c
0=-8+c3
b=-83-4c3
Step 3.4.4.1.5
Simplify the numerator.
Step 3.4.4.1.5.1
Multiply -2 by 3.
a=-6+83+4c3-c
0=-8+c3
b=-83-4c3
Step 3.4.4.1.5.2
Add -6 and 8.
a=23+4c3-c
0=-8+c3
b=-83-4c3
a=23+4c3-c
0=-8+c3
b=-83-4c3
Step 3.4.4.1.6
To write -c as a fraction with a common denominator, multiply by 33.
a=23+4c3-c⋅33
0=-8+c3
b=-83-4c3
Step 3.4.4.1.7
Combine -c and 33.
a=23+4c3+-c⋅33
0=-8+c3
b=-83-4c3
Step 3.4.4.1.8
Combine the numerators over the common denominator.
a=23+4c-c⋅33
0=-8+c3
b=-83-4c3
Step 3.4.4.1.9
Combine the numerators over the common denominator.
a=2+4c-c⋅33
0=-8+c3
b=-83-4c3
Step 3.4.4.1.10
Multiply 3 by -1.
a=2+4c-3c3
0=-8+c3
b=-83-4c3
Step 3.4.4.1.11
Subtract 3c from 4c.
a=2+c3
0=-8+c3
b=-83-4c3
a=2+c3
0=-8+c3
b=-83-4c3
a=2+c3
0=-8+c3
b=-83-4c3
a=2+c3
0=-8+c3
b=-83-4c3
Step 3.5
Solve for c in 0=-8+c3.
Step 3.5.1
Set the numerator equal to zero.
8+c=0
a=2+c3
b=-83-4c3
Step 3.5.2
Subtract 8 from both sides of the equation.
c=-8
a=2+c3
b=-83-4c3
c=-8
a=2+c3
b=-83-4c3
Step 3.6
Replace all occurrences of c with -8 in each equation.
Step 3.6.1
Replace all occurrences of c in a=2+c3 with -8.
a=2-83
c=-8
b=-83-4c3
Step 3.6.2
Simplify a=2-83.
Step 3.6.2.1
Simplify the left side.
Step 3.6.2.1.1
Remove parentheses.
a=2-83
c=-8
b=-83-4c3
a=2-83
c=-8
b=-83-4c3
Step 3.6.2.2
Simplify the right side.
Step 3.6.2.2.1
Simplify 2-83.
Step 3.6.2.2.1.1
Subtract 8 from 2.
a=-63
c=-8
b=-83-4c3
Step 3.6.2.2.1.2
Divide -6 by 3.
a=-2
c=-8
b=-83-4c3
a=-2
c=-8
b=-83-4c3
a=-2
c=-8
b=-83-4c3
a=-2
c=-8
b=-83-4c3
Step 3.6.3
Replace all occurrences of c in b=-83-4c3 with -8.
b=-83-4(-8)3
a=-2
c=-8
Step 3.6.4
Simplify the right side.
Step 3.6.4.1
Simplify -83-4(-8)3.
Step 3.6.4.1.1
Combine the numerators over the common denominator.
b=-8-4⋅-83
a=-2
c=-8
Step 3.6.4.1.2
Simplify the expression.
Step 3.6.4.1.2.1
Multiply -4 by -8.
b=-8+323
a=-2
c=-8
Step 3.6.4.1.2.2
Add -8 and 32.
b=243
a=-2
c=-8
Step 3.6.4.1.2.3
Divide 24 by 3.
b=8
a=-2
c=-8
b=8
a=-2
c=-8
b=8
a=-2
c=-8
b=8
a=-2
c=-8
b=8
a=-2
c=-8
Step 3.7
List all of the solutions.
b=8,a=-2,c=-8
b=8,a=-2,c=-8
Step 4
Substitute the actual values of a,b, and c into the formula for a quadratic equation to find the resulting equation.
y=-2x2+8x-8
Step 5