Enter a problem...
Finite Math Examples
2x+2y=32x+2y=3 , -x+2y=1−x+2y=1
Step 1
Step 1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.2
Subtract 2x2x from both sides of the equation.
2y=3-2x2y=3−2x
Step 1.3
Divide each term in 2y=3-2x2y=3−2x by 22 and simplify.
Step 1.3.1
Divide each term in 2y=3-2x2y=3−2x by 22.
2y2=32+-2x22y2=32+−2x2
Step 1.3.2
Simplify the left side.
Step 1.3.2.1
Cancel the common factor of 22.
Step 1.3.2.1.1
Cancel the common factor.
2y2=32+-2x2
Step 1.3.2.1.2
Divide y by 1.
y=32+-2x2
y=32+-2x2
y=32+-2x2
Step 1.3.3
Simplify the right side.
Step 1.3.3.1
Cancel the common factor of -2 and 2.
Step 1.3.3.1.1
Factor 2 out of -2x.
y=32+2(-x)2
Step 1.3.3.1.2
Cancel the common factors.
Step 1.3.3.1.2.1
Factor 2 out of 2.
y=32+2(-x)2(1)
Step 1.3.3.1.2.2
Cancel the common factor.
y=32+2(-x)2⋅1
Step 1.3.3.1.2.3
Rewrite the expression.
y=32+-x1
Step 1.3.3.1.2.4
Divide -x by 1.
y=32-x
y=32-x
y=32-x
y=32-x
y=32-x
Step 1.4
Reorder 32 and -x.
y=-x+32
y=-x+32
Step 2
Using the slope-intercept form, the slope is -1.
m1=-1
Step 3
Step 3.1
The slope-intercept form is y=mx+b, where m is the slope and b is the y-intercept.
y=mx+b
Step 3.2
Add x to both sides of the equation.
2y=1+x
Step 3.3
Divide each term in 2y=1+x by 2 and simplify.
Step 3.3.1
Divide each term in 2y=1+x by 2.
2y2=12+x2
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of 2.
Step 3.3.2.1.1
Cancel the common factor.
2y2=12+x2
Step 3.3.2.1.2
Divide y by 1.
y=12+x2
y=12+x2
y=12+x2
y=12+x2
Step 3.4
Write in y=mx+b form.
Step 3.4.1
Reorder 12 and x2.
y=x2+12
Step 3.4.2
Reorder terms.
y=12x+12
y=12x+12
y=12x+12
Step 4
Using the slope-intercept form, the slope is 12.
m2=12
Step 5
Set up the system of equations to find any points of intersection.
2x+2y=3,-x+2y=1
Step 6
Step 6.1
Solve for x in 2x+2y=3.
Step 6.1.1
Subtract 2y from both sides of the equation.
2x=3-2y
-x+2y=1
Step 6.1.2
Divide each term in 2x=3-2y by 2 and simplify.
Step 6.1.2.1
Divide each term in 2x=3-2y by 2.
2x2=32+-2y2
-x+2y=1
Step 6.1.2.2
Simplify the left side.
Step 6.1.2.2.1
Cancel the common factor of 2.
Step 6.1.2.2.1.1
Cancel the common factor.
2x2=32+-2y2
-x+2y=1
Step 6.1.2.2.1.2
Divide x by 1.
x=32+-2y2
-x+2y=1
x=32+-2y2
-x+2y=1
x=32+-2y2
-x+2y=1
Step 6.1.2.3
Simplify the right side.
Step 6.1.2.3.1
Cancel the common factor of -2 and 2.
Step 6.1.2.3.1.1
Factor 2 out of -2y.
x=32+2(-y)2
-x+2y=1
Step 6.1.2.3.1.2
Cancel the common factors.
Step 6.1.2.3.1.2.1
Factor 2 out of 2.
x=32+2(-y)2(1)
-x+2y=1
Step 6.1.2.3.1.2.2
Cancel the common factor.
x=32+2(-y)2⋅1
-x+2y=1
Step 6.1.2.3.1.2.3
Rewrite the expression.
x=32+-y1
-x+2y=1
Step 6.1.2.3.1.2.4
Divide -y by 1.
x=32-y
-x+2y=1
x=32-y
-x+2y=1
x=32-y
-x+2y=1
x=32-y
-x+2y=1
x=32-y
-x+2y=1
x=32-y
-x+2y=1
Step 6.2
Replace all occurrences of x with 32-y in each equation.
Step 6.2.1
Replace all occurrences of x in -x+2y=1 with 32-y.
-(32-y)+2y=1
x=32-y
Step 6.2.2
Simplify the left side.
Step 6.2.2.1
Simplify -(32-y)+2y.
Step 6.2.2.1.1
Simplify each term.
Step 6.2.2.1.1.1
Apply the distributive property.
-32+y+2y=1
x=32-y
Step 6.2.2.1.1.2
Multiply --y.
Step 6.2.2.1.1.2.1
Multiply -1 by -1.
-32+1y+2y=1
x=32-y
Step 6.2.2.1.1.2.2
Multiply y by 1.
-32+y+2y=1
x=32-y
-32+y+2y=1
x=32-y
-32+y+2y=1
x=32-y
Step 6.2.2.1.2
Add y and 2y.
-32+3y=1
x=32-y
-32+3y=1
x=32-y
-32+3y=1
x=32-y
-32+3y=1
x=32-y
Step 6.3
Solve for y in -32+3y=1.
Step 6.3.1
Move all terms not containing y to the right side of the equation.
Step 6.3.1.1
Add 32 to both sides of the equation.
3y=1+32
x=32-y
Step 6.3.1.2
Write 1 as a fraction with a common denominator.
3y=22+32
x=32-y
Step 6.3.1.3
Combine the numerators over the common denominator.
3y=2+32
x=32-y
Step 6.3.1.4
Add 2 and 3.
3y=52
x=32-y
3y=52
x=32-y
Step 6.3.2
Divide each term in 3y=52 by 3 and simplify.
Step 6.3.2.1
Divide each term in 3y=52 by 3.
3y3=523
x=32-y
Step 6.3.2.2
Simplify the left side.
Step 6.3.2.2.1
Cancel the common factor of 3.
Step 6.3.2.2.1.1
Cancel the common factor.
3y3=523
x=32-y
Step 6.3.2.2.1.2
Divide y by 1.
y=523
x=32-y
y=523
x=32-y
y=523
x=32-y
Step 6.3.2.3
Simplify the right side.
Step 6.3.2.3.1
Multiply the numerator by the reciprocal of the denominator.
y=52⋅13
x=32-y
Step 6.3.2.3.2
Multiply 52⋅13.
Step 6.3.2.3.2.1
Multiply 52 by 13.
y=52⋅3
x=32-y
Step 6.3.2.3.2.2
Multiply 2 by 3.
y=56
x=32-y
y=56
x=32-y
y=56
x=32-y
y=56
x=32-y
y=56
x=32-y
Step 6.4
Replace all occurrences of y with 56 in each equation.
Step 6.4.1
Replace all occurrences of y in x=32-y with 56.
x=32-(56)
y=56
Step 6.4.2
Simplify the right side.
Step 6.4.2.1
Simplify 32-(56).
Step 6.4.2.1.1
To write 32 as a fraction with a common denominator, multiply by 33.
x=32⋅33-56
y=56
Step 6.4.2.1.2
Write each expression with a common denominator of 6, by multiplying each by an appropriate factor of 1.
Step 6.4.2.1.2.1
Multiply 32 by 33.
x=3⋅32⋅3-56
y=56
Step 6.4.2.1.2.2
Multiply 2 by 3.
x=3⋅36-56
y=56
x=3⋅36-56
y=56
Step 6.4.2.1.3
Combine the numerators over the common denominator.
x=3⋅3-56
y=56
Step 6.4.2.1.4
Simplify the numerator.
Step 6.4.2.1.4.1
Multiply 3 by 3.
x=9-56
y=56
Step 6.4.2.1.4.2
Subtract 5 from 9.
x=46
y=56
x=46
y=56
Step 6.4.2.1.5
Cancel the common factor of 4 and 6.
Step 6.4.2.1.5.1
Factor 2 out of 4.
x=2(2)6
y=56
Step 6.4.2.1.5.2
Cancel the common factors.
Step 6.4.2.1.5.2.1
Factor 2 out of 6.
x=2⋅22⋅3
y=56
Step 6.4.2.1.5.2.2
Cancel the common factor.
x=2⋅22⋅3
y=56
Step 6.4.2.1.5.2.3
Rewrite the expression.
x=23
y=56
x=23
y=56
x=23
y=56
x=23
y=56
x=23
y=56
x=23
y=56
Step 6.5
The solution to the system is the complete set of ordered pairs that are valid solutions.
(23,56)
(23,56)
Step 7
Since the slopes are different, the lines will have exactly one intersection point.
m1=-1
m2=12
(23,56)
Step 8