Enter a problem...
Finite Math Examples
,
Step 1
Step 1.1
The slope-intercept form is , where is the slope and is the y-intercept.
Step 1.2
Simplify the left side.
Step 1.2.1
Simplify each term.
Step 1.2.1.1
Combine and .
Step 1.2.1.2
Combine and .
Step 1.2.1.3
Move to the left of .
Step 1.3
Subtract from both sides of the equation.
Step 1.4
Multiply both sides of the equation by .
Step 1.5
Simplify both sides of the equation.
Step 1.5.1
Simplify the left side.
Step 1.5.1.1
Simplify .
Step 1.5.1.1.1
Cancel the common factor of .
Step 1.5.1.1.1.1
Move the leading negative in into the numerator.
Step 1.5.1.1.1.2
Move the leading negative in into the numerator.
Step 1.5.1.1.1.3
Factor out of .
Step 1.5.1.1.1.4
Cancel the common factor.
Step 1.5.1.1.1.5
Rewrite the expression.
Step 1.5.1.1.2
Cancel the common factor of .
Step 1.5.1.1.2.1
Factor out of .
Step 1.5.1.1.2.2
Cancel the common factor.
Step 1.5.1.1.2.3
Rewrite the expression.
Step 1.5.1.1.3
Multiply.
Step 1.5.1.1.3.1
Multiply by .
Step 1.5.1.1.3.2
Multiply by .
Step 1.5.2
Simplify the right side.
Step 1.5.2.1
Simplify .
Step 1.5.2.1.1
Apply the distributive property.
Step 1.5.2.1.2
Multiply .
Step 1.5.2.1.2.1
Multiply by .
Step 1.5.2.1.2.2
Combine and .
Step 1.5.2.1.2.3
Multiply by .
Step 1.5.2.1.3
Cancel the common factor of .
Step 1.5.2.1.3.1
Move the leading negative in into the numerator.
Step 1.5.2.1.3.2
Move the leading negative in into the numerator.
Step 1.5.2.1.3.3
Factor out of .
Step 1.5.2.1.3.4
Factor out of .
Step 1.5.2.1.3.5
Cancel the common factor.
Step 1.5.2.1.3.6
Rewrite the expression.
Step 1.5.2.1.4
Multiply by .
Step 1.5.2.1.5
Simplify the expression.
Step 1.5.2.1.5.1
Multiply by .
Step 1.5.2.1.5.2
Multiply by .
Step 1.5.2.1.5.3
Move the negative in front of the fraction.
Step 1.6
Reorder and .
Step 1.7
Reorder terms.
Step 2
Using the slope-intercept form, the slope is .
Step 3
Step 3.1
The slope-intercept form is , where is the slope and is the y-intercept.
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Combine and .
Step 3.2.1.2
Combine and .
Step 3.3
Subtract from both sides of the equation.
Step 3.4
Multiply both sides of the equation by .
Step 3.5
Simplify both sides of the equation.
Step 3.5.1
Simplify the left side.
Step 3.5.1.1
Simplify .
Step 3.5.1.1.1
Cancel the common factor of .
Step 3.5.1.1.1.1
Cancel the common factor.
Step 3.5.1.1.1.2
Rewrite the expression.
Step 3.5.1.1.2
Cancel the common factor of .
Step 3.5.1.1.2.1
Factor out of .
Step 3.5.1.1.2.2
Cancel the common factor.
Step 3.5.1.1.2.3
Rewrite the expression.
Step 3.5.2
Simplify the right side.
Step 3.5.2.1
Simplify .
Step 3.5.2.1.1
Apply the distributive property.
Step 3.5.2.1.2
Multiply .
Step 3.5.2.1.2.1
Combine and .
Step 3.5.2.1.2.2
Multiply by .
Step 3.5.2.1.3
Cancel the common factor of .
Step 3.5.2.1.3.1
Move the leading negative in into the numerator.
Step 3.5.2.1.3.2
Factor out of .
Step 3.5.2.1.3.3
Cancel the common factor.
Step 3.5.2.1.3.4
Rewrite the expression.
Step 3.5.2.1.4
Multiply by .
Step 3.5.2.1.5
Simplify the expression.
Step 3.5.2.1.5.1
Multiply by .
Step 3.5.2.1.5.2
Move the negative in front of the fraction.
Step 3.6
Reorder and .
Step 3.7
Write in form.
Step 3.7.1
Reorder terms.
Step 3.7.2
Remove parentheses.
Step 4
Using the slope-intercept form, the slope is .
Step 5
Set up the system of equations to find any points of intersection.
Step 6
Step 6.1
Solve for in .
Step 6.1.1
Simplify each term.
Step 6.1.1.1
Combine and .
Step 6.1.1.2
Combine and .
Step 6.1.1.3
Move to the left of .
Step 6.1.2
Add to both sides of the equation.
Step 6.1.3
Multiply both sides of the equation by .
Step 6.1.4
Simplify both sides of the equation.
Step 6.1.4.1
Simplify the left side.
Step 6.1.4.1.1
Simplify .
Step 6.1.4.1.1.1
Cancel the common factor of .
Step 6.1.4.1.1.1.1
Cancel the common factor.
Step 6.1.4.1.1.1.2
Rewrite the expression.
Step 6.1.4.1.1.2
Cancel the common factor of .
Step 6.1.4.1.1.2.1
Factor out of .
Step 6.1.4.1.1.2.2
Cancel the common factor.
Step 6.1.4.1.1.2.3
Rewrite the expression.
Step 6.1.4.2
Simplify the right side.
Step 6.1.4.2.1
Simplify .
Step 6.1.4.2.1.1
Apply the distributive property.
Step 6.1.4.2.1.2
Multiply .
Step 6.1.4.2.1.2.1
Combine and .
Step 6.1.4.2.1.2.2
Multiply by .
Step 6.1.4.2.1.3
Cancel the common factor of .
Step 6.1.4.2.1.3.1
Factor out of .
Step 6.1.4.2.1.3.2
Cancel the common factor.
Step 6.1.4.2.1.3.3
Rewrite the expression.
Step 6.1.4.2.1.4
Combine and .
Step 6.1.4.2.1.5
Multiply by .
Step 6.1.4.2.1.6
Combine and .
Step 6.1.5
Reorder and .
Step 6.2
Replace all occurrences of with in each equation.
Step 6.2.1
Replace all occurrences of in with .
Step 6.2.2
Simplify the left side.
Step 6.2.2.1
Simplify .
Step 6.2.2.1.1
Simplify each term.
Step 6.2.2.1.1.1
Apply the distributive property.
Step 6.2.2.1.1.2
Cancel the common factor of .
Step 6.2.2.1.1.2.1
Factor out of .
Step 6.2.2.1.1.2.2
Factor out of .
Step 6.2.2.1.1.2.3
Cancel the common factor.
Step 6.2.2.1.1.2.4
Rewrite the expression.
Step 6.2.2.1.1.3
Multiply by .
Step 6.2.2.1.1.4
Multiply by .
Step 6.2.2.1.1.5
Cancel the common factor of .
Step 6.2.2.1.1.5.1
Factor out of .
Step 6.2.2.1.1.5.2
Cancel the common factor.
Step 6.2.2.1.1.5.3
Rewrite the expression.
Step 6.2.2.1.1.6
Combine and .
Step 6.2.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 6.2.2.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 6.2.2.1.3.1
Multiply by .
Step 6.2.2.1.3.2
Multiply by .
Step 6.2.2.1.4
Combine the numerators over the common denominator.
Step 6.2.2.1.5
Simplify each term.
Step 6.2.2.1.5.1
Simplify the numerator.
Step 6.2.2.1.5.1.1
Factor out of .
Step 6.2.2.1.5.1.1.1
Factor out of .
Step 6.2.2.1.5.1.1.2
Factor out of .
Step 6.2.2.1.5.1.1.3
Factor out of .
Step 6.2.2.1.5.1.2
Multiply by .
Step 6.2.2.1.5.1.3
Add and .
Step 6.2.2.1.5.2
Cancel the common factor of and .
Step 6.2.2.1.5.2.1
Factor out of .
Step 6.2.2.1.5.2.2
Cancel the common factors.
Step 6.2.2.1.5.2.2.1
Factor out of .
Step 6.2.2.1.5.2.2.2
Cancel the common factor.
Step 6.2.2.1.5.2.2.3
Rewrite the expression.
Step 6.2.2.1.5.3
Move to the left of .
Step 6.3
Solve for in .
Step 6.3.1
Move all terms not containing to the right side of the equation.
Step 6.3.1.1
Subtract from both sides of the equation.
Step 6.3.1.2
To write as a fraction with a common denominator, multiply by .
Step 6.3.1.3
Combine and .
Step 6.3.1.4
Combine the numerators over the common denominator.
Step 6.3.1.5
Simplify the numerator.
Step 6.3.1.5.1
Multiply by .
Step 6.3.1.5.2
Subtract from .
Step 6.3.2
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
Step 6.3.3
Divide each term in by and simplify.
Step 6.3.3.1
Divide each term in by .
Step 6.3.3.2
Simplify the left side.
Step 6.3.3.2.1
Cancel the common factor of .
Step 6.3.3.2.1.1
Cancel the common factor.
Step 6.3.3.2.1.2
Divide by .
Step 6.3.3.3
Simplify the right side.
Step 6.3.3.3.1
Cancel the common factor of and .
Step 6.3.3.3.1.1
Factor out of .
Step 6.3.3.3.1.2
Cancel the common factors.
Step 6.3.3.3.1.2.1
Factor out of .
Step 6.3.3.3.1.2.2
Cancel the common factor.
Step 6.3.3.3.1.2.3
Rewrite the expression.
Step 6.4
Replace all occurrences of with in each equation.
Step 6.4.1
Replace all occurrences of in with .
Step 6.4.2
Simplify the right side.
Step 6.4.2.1
Simplify .
Step 6.4.2.1.1
Combine the numerators over the common denominator.
Step 6.4.2.1.2
Multiply .
Step 6.4.2.1.2.1
Combine and .
Step 6.4.2.1.2.2
Multiply by .
Step 6.4.2.1.3
To write as a fraction with a common denominator, multiply by .
Step 6.4.2.1.4
Combine and .
Step 6.4.2.1.5
Combine the numerators over the common denominator.
Step 6.4.2.1.6
Simplify the numerator.
Step 6.4.2.1.6.1
Multiply by .
Step 6.4.2.1.6.2
Add and .
Step 6.4.2.1.7
Multiply the numerator by the reciprocal of the denominator.
Step 6.4.2.1.8
Cancel the common factor of .
Step 6.4.2.1.8.1
Factor out of .
Step 6.4.2.1.8.2
Cancel the common factor.
Step 6.4.2.1.8.3
Rewrite the expression.
Step 6.5
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
Since the slopes are different, the lines will have exactly one intersection point.
Step 8