Enter a problem...
Finite Math Examples
y=-2x+1y=−2x+1 , y=12x+4y=12x+4
Step 1
Step 1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.2
Using the slope-intercept form, the slope is -2−2.
m1=-2m1=−2
m1=-2m1=−2
Step 2
Step 2.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 2.2
Simplify the right side.
Step 2.2.1
Combine 1212 and xx.
y=x2+4y=x2+4
y=x2+4y=x2+4
Step 2.3
Reorder terms.
y=12x+4y=12x+4
y=12x+4y=12x+4
Step 3
Using the slope-intercept form, the slope is 1212.
m2=12m2=12
Step 4
Set up the system of equations to find any points of intersection.
y=-2x+1,y=12x+4y=−2x+1,y=12x+4
Step 5
Step 5.1
Eliminate the equal sides of each equation and combine.
-2x+1=12x+4−2x+1=12x+4
Step 5.2
Solve -2x+1=12x+4−2x+1=12x+4 for xx.
Step 5.2.1
Combine 1212 and xx.
-2x+1=x2+4−2x+1=x2+4
Step 5.2.2
Move all terms containing xx to the left side of the equation.
Step 5.2.2.1
Subtract x2x2 from both sides of the equation.
-2x+1-x2=4−2x+1−x2=4
Step 5.2.2.2
To write -2x−2x as a fraction with a common denominator, multiply by 2222.
-2x⋅22-x2+1=4−2x⋅22−x2+1=4
Step 5.2.2.3
Combine -2x−2x and 2222.
-2x⋅22-x2+1=4−2x⋅22−x2+1=4
Step 5.2.2.4
Combine the numerators over the common denominator.
-2x⋅2-x2+1=4−2x⋅2−x2+1=4
Step 5.2.2.5
Simplify each term.
Step 5.2.2.5.1
Simplify the numerator.
Step 5.2.2.5.1.1
Factor xx out of -2x⋅2-x−2x⋅2−x.
Step 5.2.2.5.1.1.1
Factor xx out of -2x⋅2−2x⋅2.
x(-2⋅2)-x2+1=4x(−2⋅2)−x2+1=4
Step 5.2.2.5.1.1.2
Factor xx out of -x−x.
x(-2⋅2)+x⋅-12+1=4x(−2⋅2)+x⋅−12+1=4
Step 5.2.2.5.1.1.3
Factor xx out of x(-2⋅2)+x⋅-1x(−2⋅2)+x⋅−1.
x(-2⋅2-1)2+1=4x(−2⋅2−1)2+1=4
x(-2⋅2-1)2+1=4x(−2⋅2−1)2+1=4
Step 5.2.2.5.1.2
Multiply -2−2 by 22.
x(-4-1)2+1=4x(−4−1)2+1=4
Step 5.2.2.5.1.3
Subtract 11 from -4−4.
x⋅-52+1=4x⋅−52+1=4
x⋅-52+1=4x⋅−52+1=4
Step 5.2.2.5.2
Move -5−5 to the left of xx.
-5⋅x2+1=4−5⋅x2+1=4
Step 5.2.2.5.3
Move the negative in front of the fraction.
-5x2+1=4−5x2+1=4
-5x2+1=4−5x2+1=4
-5x2+1=4
Step 5.2.3
Move all terms not containing x to the right side of the equation.
Step 5.2.3.1
Subtract 1 from both sides of the equation.
-5x2=4-1
Step 5.2.3.2
Subtract 1 from 4.
-5x2=3
-5x2=3
Step 5.2.4
Multiply both sides of the equation by -25.
-25(-5x2)=-25⋅3
Step 5.2.5
Simplify both sides of the equation.
Step 5.2.5.1
Simplify the left side.
Step 5.2.5.1.1
Simplify -25(-5x2).
Step 5.2.5.1.1.1
Cancel the common factor of 2.
Step 5.2.5.1.1.1.1
Move the leading negative in -25 into the numerator.
-25(-5x2)=-25⋅3
Step 5.2.5.1.1.1.2
Move the leading negative in -5x2 into the numerator.
-25⋅-5x2=-25⋅3
Step 5.2.5.1.1.1.3
Factor 2 out of -2.
2(-1)5⋅-5x2=-25⋅3
Step 5.2.5.1.1.1.4
Cancel the common factor.
2⋅-15⋅-5x2=-25⋅3
Step 5.2.5.1.1.1.5
Rewrite the expression.
-15(-5x)=-25⋅3
-15(-5x)=-25⋅3
Step 5.2.5.1.1.2
Cancel the common factor of 5.
Step 5.2.5.1.1.2.1
Factor 5 out of -5x.
-15(5(-x))=-25⋅3
Step 5.2.5.1.1.2.2
Cancel the common factor.
-15(5(-x))=-25⋅3
Step 5.2.5.1.1.2.3
Rewrite the expression.
--x=-25⋅3
--x=-25⋅3
Step 5.2.5.1.1.3
Multiply.
Step 5.2.5.1.1.3.1
Multiply -1 by -1.
1x=-25⋅3
Step 5.2.5.1.1.3.2
Multiply x by 1.
x=-25⋅3
x=-25⋅3
x=-25⋅3
x=-25⋅3
Step 5.2.5.2
Simplify the right side.
Step 5.2.5.2.1
Simplify -25⋅3.
Step 5.2.5.2.1.1
Multiply -25⋅3.
Step 5.2.5.2.1.1.1
Multiply 3 by -1.
x=-3(25)
Step 5.2.5.2.1.1.2
Combine -3 and 25.
x=-3⋅25
Step 5.2.5.2.1.1.3
Multiply -3 by 2.
x=-65
x=-65
Step 5.2.5.2.1.2
Move the negative in front of the fraction.
x=-65
x=-65
x=-65
x=-65
x=-65
Step 5.3
Evaluate y when x=-65.
Step 5.3.1
Substitute -65 for x.
y=12⋅(-65)+4
Step 5.3.2
Substitute -65 for x in y=12⋅(-65)+4 and solve for y.
Step 5.3.2.1
Remove parentheses.
y=12⋅(-1(65))+4
Step 5.3.2.2
Simplify 12⋅(-1(65))+4.
Step 5.3.2.2.1
Simplify each term.
Step 5.3.2.2.1.1
Rewrite -1(65) as -(65).
y=12⋅(-(65))+4
Step 5.3.2.2.1.2
Cancel the common factor of 2.
Step 5.3.2.2.1.2.1
Move the leading negative in -(65) into the numerator.
y=12⋅-65+4
Step 5.3.2.2.1.2.2
Factor 2 out of -6.
y=12⋅2(-3)5+4
Step 5.3.2.2.1.2.3
Cancel the common factor.
y=12⋅2⋅-35+4
Step 5.3.2.2.1.2.4
Rewrite the expression.
y=-35+4
y=-35+4
Step 5.3.2.2.1.3
Move the negative in front of the fraction.
y=-35+4
y=-35+4
Step 5.3.2.2.2
To write 4 as a fraction with a common denominator, multiply by 55.
y=-35+4⋅55
Step 5.3.2.2.3
Combine 4 and 55.
y=-35+4⋅55
Step 5.3.2.2.4
Combine the numerators over the common denominator.
y=-3+4⋅55
Step 5.3.2.2.5
Simplify the numerator.
Step 5.3.2.2.5.1
Multiply 4 by 5.
y=-3+205
Step 5.3.2.2.5.2
Add -3 and 20.
y=175
y=175
y=175
y=175
y=175
Step 5.4
The solution to the system is the complete set of ordered pairs that are valid solutions.
(-65,175)
(-65,175)
Step 6
Since the slopes are different, the lines will have exactly one intersection point.
m1=-2
m2=12
(-65,175)
Step 7