Finite Math Examples

Find the Slope for Each Equation y=-2x+1 , y=1/2x+4
y=-2x+1y=2x+1 , y=12x+4y=12x+4
Step 1
Use the slope-intercept form to find the slope.
Tap for more steps...
Step 1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.2
Using the slope-intercept form, the slope is -22.
m1=-2m1=2
m1=-2m1=2
Step 2
Rewrite in slope-intercept form.
Tap for more steps...
Step 2.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 2.2
Simplify the right side.
Tap for more steps...
Step 2.2.1
Combine 1212 and xx.
y=x2+4y=x2+4
y=x2+4y=x2+4
Step 2.3
Reorder terms.
y=12x+4y=12x+4
y=12x+4y=12x+4
Step 3
Using the slope-intercept form, the slope is 1212.
m2=12m2=12
Step 4
Set up the system of equations to find any points of intersection.
y=-2x+1,y=12x+4y=2x+1,y=12x+4
Step 5
Solve the system of equations to find the point of intersection.
Tap for more steps...
Step 5.1
Eliminate the equal sides of each equation and combine.
-2x+1=12x+42x+1=12x+4
Step 5.2
Solve -2x+1=12x+42x+1=12x+4 for xx.
Tap for more steps...
Step 5.2.1
Combine 1212 and xx.
-2x+1=x2+42x+1=x2+4
Step 5.2.2
Move all terms containing xx to the left side of the equation.
Tap for more steps...
Step 5.2.2.1
Subtract x2x2 from both sides of the equation.
-2x+1-x2=42x+1x2=4
Step 5.2.2.2
To write -2x2x as a fraction with a common denominator, multiply by 2222.
-2x22-x2+1=42x22x2+1=4
Step 5.2.2.3
Combine -2x2x and 2222.
-2x22-x2+1=42x22x2+1=4
Step 5.2.2.4
Combine the numerators over the common denominator.
-2x2-x2+1=42x2x2+1=4
Step 5.2.2.5
Simplify each term.
Tap for more steps...
Step 5.2.2.5.1
Simplify the numerator.
Tap for more steps...
Step 5.2.2.5.1.1
Factor xx out of -2x2-x2x2x.
Tap for more steps...
Step 5.2.2.5.1.1.1
Factor xx out of -2x22x2.
x(-22)-x2+1=4x(22)x2+1=4
Step 5.2.2.5.1.1.2
Factor xx out of -xx.
x(-22)+x-12+1=4x(22)+x12+1=4
Step 5.2.2.5.1.1.3
Factor xx out of x(-22)+x-1x(22)+x1.
x(-22-1)2+1=4x(221)2+1=4
x(-22-1)2+1=4x(221)2+1=4
Step 5.2.2.5.1.2
Multiply -22 by 22.
x(-4-1)2+1=4x(41)2+1=4
Step 5.2.2.5.1.3
Subtract 11 from -44.
x-52+1=4x52+1=4
x-52+1=4x52+1=4
Step 5.2.2.5.2
Move -55 to the left of xx.
-5x2+1=45x2+1=4
Step 5.2.2.5.3
Move the negative in front of the fraction.
-5x2+1=45x2+1=4
-5x2+1=45x2+1=4
-5x2+1=4
Step 5.2.3
Move all terms not containing x to the right side of the equation.
Tap for more steps...
Step 5.2.3.1
Subtract 1 from both sides of the equation.
-5x2=4-1
Step 5.2.3.2
Subtract 1 from 4.
-5x2=3
-5x2=3
Step 5.2.4
Multiply both sides of the equation by -25.
-25(-5x2)=-253
Step 5.2.5
Simplify both sides of the equation.
Tap for more steps...
Step 5.2.5.1
Simplify the left side.
Tap for more steps...
Step 5.2.5.1.1
Simplify -25(-5x2).
Tap for more steps...
Step 5.2.5.1.1.1
Cancel the common factor of 2.
Tap for more steps...
Step 5.2.5.1.1.1.1
Move the leading negative in -25 into the numerator.
-25(-5x2)=-253
Step 5.2.5.1.1.1.2
Move the leading negative in -5x2 into the numerator.
-25-5x2=-253
Step 5.2.5.1.1.1.3
Factor 2 out of -2.
2(-1)5-5x2=-253
Step 5.2.5.1.1.1.4
Cancel the common factor.
2-15-5x2=-253
Step 5.2.5.1.1.1.5
Rewrite the expression.
-15(-5x)=-253
-15(-5x)=-253
Step 5.2.5.1.1.2
Cancel the common factor of 5.
Tap for more steps...
Step 5.2.5.1.1.2.1
Factor 5 out of -5x.
-15(5(-x))=-253
Step 5.2.5.1.1.2.2
Cancel the common factor.
-15(5(-x))=-253
Step 5.2.5.1.1.2.3
Rewrite the expression.
--x=-253
--x=-253
Step 5.2.5.1.1.3
Multiply.
Tap for more steps...
Step 5.2.5.1.1.3.1
Multiply -1 by -1.
1x=-253
Step 5.2.5.1.1.3.2
Multiply x by 1.
x=-253
x=-253
x=-253
x=-253
Step 5.2.5.2
Simplify the right side.
Tap for more steps...
Step 5.2.5.2.1
Simplify -253.
Tap for more steps...
Step 5.2.5.2.1.1
Multiply -253.
Tap for more steps...
Step 5.2.5.2.1.1.1
Multiply 3 by -1.
x=-3(25)
Step 5.2.5.2.1.1.2
Combine -3 and 25.
x=-325
Step 5.2.5.2.1.1.3
Multiply -3 by 2.
x=-65
x=-65
Step 5.2.5.2.1.2
Move the negative in front of the fraction.
x=-65
x=-65
x=-65
x=-65
x=-65
Step 5.3
Evaluate y when x=-65.
Tap for more steps...
Step 5.3.1
Substitute -65 for x.
y=12(-65)+4
Step 5.3.2
Substitute -65 for x in y=12(-65)+4 and solve for y.
Tap for more steps...
Step 5.3.2.1
Remove parentheses.
y=12(-1(65))+4
Step 5.3.2.2
Simplify 12(-1(65))+4.
Tap for more steps...
Step 5.3.2.2.1
Simplify each term.
Tap for more steps...
Step 5.3.2.2.1.1
Rewrite -1(65) as -(65).
y=12(-(65))+4
Step 5.3.2.2.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 5.3.2.2.1.2.1
Move the leading negative in -(65) into the numerator.
y=12-65+4
Step 5.3.2.2.1.2.2
Factor 2 out of -6.
y=122(-3)5+4
Step 5.3.2.2.1.2.3
Cancel the common factor.
y=122-35+4
Step 5.3.2.2.1.2.4
Rewrite the expression.
y=-35+4
y=-35+4
Step 5.3.2.2.1.3
Move the negative in front of the fraction.
y=-35+4
y=-35+4
Step 5.3.2.2.2
To write 4 as a fraction with a common denominator, multiply by 55.
y=-35+455
Step 5.3.2.2.3
Combine 4 and 55.
y=-35+455
Step 5.3.2.2.4
Combine the numerators over the common denominator.
y=-3+455
Step 5.3.2.2.5
Simplify the numerator.
Tap for more steps...
Step 5.3.2.2.5.1
Multiply 4 by 5.
y=-3+205
Step 5.3.2.2.5.2
Add -3 and 20.
y=175
y=175
y=175
y=175
y=175
Step 5.4
The solution to the system is the complete set of ordered pairs that are valid solutions.
(-65,175)
(-65,175)
Step 6
Since the slopes are different, the lines will have exactly one intersection point.
m1=-2
m2=12
(-65,175)
Step 7
 [x2  12  π  xdx ]