Enter a problem...
Finite Math Examples
5x+2y=205x+2y=20 , x+2y=8x+2y=8
Step 1
Step 1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.2
Subtract 5x5x from both sides of the equation.
2y=20-5x2y=20−5x
Step 1.3
Divide each term in 2y=20-5x2y=20−5x by 22 and simplify.
Step 1.3.1
Divide each term in 2y=20-5x2y=20−5x by 22.
2y2=202+-5x22y2=202+−5x2
Step 1.3.2
Simplify the left side.
Step 1.3.2.1
Cancel the common factor of 22.
Step 1.3.2.1.1
Cancel the common factor.
2y2=202+-5x2
Step 1.3.2.1.2
Divide y by 1.
y=202+-5x2
y=202+-5x2
y=202+-5x2
Step 1.3.3
Simplify the right side.
Step 1.3.3.1
Simplify each term.
Step 1.3.3.1.1
Divide 20 by 2.
y=10+-5x2
Step 1.3.3.1.2
Move the negative in front of the fraction.
y=10-5x2
y=10-5x2
y=10-5x2
y=10-5x2
Step 1.4
Write in y=mx+b form.
Step 1.4.1
Reorder 10 and -5x2.
y=-5x2+10
Step 1.4.2
Reorder terms.
y=-(52x)+10
Step 1.4.3
Remove parentheses.
y=-52x+10
y=-52x+10
y=-52x+10
Step 2
Using the slope-intercept form, the slope is -52.
m1=-52
Step 3
Step 3.1
The slope-intercept form is y=mx+b, where m is the slope and b is the y-intercept.
y=mx+b
Step 3.2
Subtract x from both sides of the equation.
2y=8-x
Step 3.3
Divide each term in 2y=8-x by 2 and simplify.
Step 3.3.1
Divide each term in 2y=8-x by 2.
2y2=82+-x2
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of 2.
Step 3.3.2.1.1
Cancel the common factor.
2y2=82+-x2
Step 3.3.2.1.2
Divide y by 1.
y=82+-x2
y=82+-x2
y=82+-x2
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Simplify each term.
Step 3.3.3.1.1
Divide 8 by 2.
y=4+-x2
Step 3.3.3.1.2
Move the negative in front of the fraction.
y=4-x2
y=4-x2
y=4-x2
y=4-x2
Step 3.4
Write in y=mx+b form.
Step 3.4.1
Reorder 4 and -x2.
y=-x2+4
Step 3.4.2
Reorder terms.
y=-(12x)+4
Step 3.4.3
Remove parentheses.
y=-12x+4
y=-12x+4
y=-12x+4
Step 4
Using the slope-intercept form, the slope is -12.
m2=-12
Step 5
Set up the system of equations to find any points of intersection.
5x+2y=20,x+2y=8
Step 6
Step 6.1
Subtract 2y from both sides of the equation.
x=8-2y
5x+2y=20
Step 6.2
Replace all occurrences of x with 8-2y in each equation.
Step 6.2.1
Replace all occurrences of x in 5x+2y=20 with 8-2y.
5(8-2y)+2y=20
x=8-2y
Step 6.2.2
Simplify the left side.
Step 6.2.2.1
Simplify 5(8-2y)+2y.
Step 6.2.2.1.1
Simplify each term.
Step 6.2.2.1.1.1
Apply the distributive property.
5⋅8+5(-2y)+2y=20
x=8-2y
Step 6.2.2.1.1.2
Multiply 5 by 8.
40+5(-2y)+2y=20
x=8-2y
Step 6.2.2.1.1.3
Multiply -2 by 5.
40-10y+2y=20
x=8-2y
40-10y+2y=20
x=8-2y
Step 6.2.2.1.2
Add -10y and 2y.
40-8y=20
x=8-2y
40-8y=20
x=8-2y
40-8y=20
x=8-2y
40-8y=20
x=8-2y
Step 6.3
Solve for y in 40-8y=20.
Step 6.3.1
Move all terms not containing y to the right side of the equation.
Step 6.3.1.1
Subtract 40 from both sides of the equation.
-8y=20-40
x=8-2y
Step 6.3.1.2
Subtract 40 from 20.
-8y=-20
x=8-2y
-8y=-20
x=8-2y
Step 6.3.2
Divide each term in -8y=-20 by -8 and simplify.
Step 6.3.2.1
Divide each term in -8y=-20 by -8.
-8y-8=-20-8
x=8-2y
Step 6.3.2.2
Simplify the left side.
Step 6.3.2.2.1
Cancel the common factor of -8.
Step 6.3.2.2.1.1
Cancel the common factor.
-8y-8=-20-8
x=8-2y
Step 6.3.2.2.1.2
Divide y by 1.
y=-20-8
x=8-2y
y=-20-8
x=8-2y
y=-20-8
x=8-2y
Step 6.3.2.3
Simplify the right side.
Step 6.3.2.3.1
Cancel the common factor of -20 and -8.
Step 6.3.2.3.1.1
Factor -4 out of -20.
y=-4⋅5-8
x=8-2y
Step 6.3.2.3.1.2
Cancel the common factors.
Step 6.3.2.3.1.2.1
Factor -4 out of -8.
y=-4⋅5-4⋅2
x=8-2y
Step 6.3.2.3.1.2.2
Cancel the common factor.
y=-4⋅5-4⋅2
x=8-2y
Step 6.3.2.3.1.2.3
Rewrite the expression.
y=52
x=8-2y
y=52
x=8-2y
y=52
x=8-2y
y=52
x=8-2y
y=52
x=8-2y
y=52
x=8-2y
Step 6.4
Replace all occurrences of y with 52 in each equation.
Step 6.4.1
Replace all occurrences of y in x=8-2y with 52.
x=8-2(52)
y=52
Step 6.4.2
Simplify the right side.
Step 6.4.2.1
Simplify 8-2(52).
Step 6.4.2.1.1
Simplify each term.
Step 6.4.2.1.1.1
Cancel the common factor of 2.
Step 6.4.2.1.1.1.1
Factor 2 out of -2.
x=8+2(-1)(52)
y=52
Step 6.4.2.1.1.1.2
Cancel the common factor.
x=8+2⋅(-1(52))
y=52
Step 6.4.2.1.1.1.3
Rewrite the expression.
x=8-1⋅5
y=52
x=8-1⋅5
y=52
Step 6.4.2.1.1.2
Multiply -1 by 5.
x=8-5
y=52
x=8-5
y=52
Step 6.4.2.1.2
Subtract 5 from 8.
x=3
y=52
x=3
y=52
x=3
y=52
x=3
y=52
Step 6.5
The solution to the system is the complete set of ordered pairs that are valid solutions.
(3,52)
(3,52)
Step 7
Since the slopes are different, the lines will have exactly one intersection point.
m1=-52
m2=-12
(3,52)
Step 8