Enter a problem...
Finite Math Examples
y-(-3)=-13⋅(x+3)y−(−3)=−13⋅(x+3)
Step 1
The standard form of a linear equation is Ax+By=CAx+By=C.
Step 2
Multiply both sides by 33.
3(y-(-3))=3(-13⋅(x+3))3(y−(−3))=3(−13⋅(x+3))
Step 3
Step 3.1
Simplify 3(y-(-3))3(y−(−3)).
Step 3.1.1
Multiply -1−1 by -3−3.
3(y+3)=3(-13⋅(x+3))3(y+3)=3(−13⋅(x+3))
Step 3.1.2
Apply the distributive property.
3y+3⋅3=3(-13⋅(x+3))3y+3⋅3=3(−13⋅(x+3))
Step 3.1.3
Multiply 33 by 33.
3y+9=3(-13⋅(x+3))3y+9=3(−13⋅(x+3))
3y+9=3(-13⋅(x+3))3y+9=3(−13⋅(x+3))
3y+9=3(-13⋅(x+3))3y+9=3(−13⋅(x+3))
Step 4
Step 4.1
Simplify 3(-13⋅(x+3))3(−13⋅(x+3)).
Step 4.1.1
Move the negative in front of the fraction.
3y+9=3(-13⋅(x+3))3y+9=3(−13⋅(x+3))
Step 4.1.2
Apply the distributive property.
3y+9=3(-13x-13⋅3)3y+9=3(−13x−13⋅3)
Step 4.1.3
Combine xx and 1313.
3y+9=3(-x3-13⋅3)3y+9=3(−x3−13⋅3)
Step 4.1.4
Cancel the common factor of 33.
Step 4.1.4.1
Move the leading negative in -13−13 into the numerator.
3y+9=3(-x3+-13⋅3)3y+9=3(−x3+−13⋅3)
Step 4.1.4.2
Cancel the common factor.
3y+9=3(-x3+-13⋅3)
Step 4.1.4.3
Rewrite the expression.
3y+9=3(-x3-1)
3y+9=3(-x3-1)
Step 4.1.5
Apply the distributive property.
3y+9=3(-x3)+3⋅-1
Step 4.1.6
Cancel the common factor of 3.
Step 4.1.6.1
Move the leading negative in -x3 into the numerator.
3y+9=3-x3+3⋅-1
Step 4.1.6.2
Cancel the common factor.
3y+9=3-x3+3⋅-1
Step 4.1.6.3
Rewrite the expression.
3y+9=-x+3⋅-1
3y+9=-x+3⋅-1
Step 4.1.7
Multiply 3 by -1.
3y+9=-x-3
3y+9=-x-3
3y+9=-x-3
Step 5
Step 5.1
Add x to both sides of the equation.
3y+9+x=-3
Step 5.2
Move 9.
3y+x+9=-3
Step 5.3
Reorder 3y and x.
x+3y+9=-3
x+3y+9=-3
Step 6
Step 6.1
Subtract 9 from both sides of the equation.
x+3y=-3-9
Step 6.2
Subtract 9 from -3.
x+3y=-12
x+3y=-12
Step 7