Enter a problem...
Finite Math Examples
√53+(149)2√53+(149)2
Step 1
Write √53+(149)2√53+(149)2 as a function.
f(x)=√53+(149)2f(x)=√53+(149)2
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Rewrite √53√53 as √5√3√5√3.
√5√3+(149)2√5√3+(149)2
Step 2.1.2
Multiply √5√3√5√3 by √3√3√3√3.
√5√3⋅√3√3+(149)2√5√3⋅√3√3+(149)2
Step 2.1.3
Combine and simplify the denominator.
Step 2.1.3.1
Multiply √5√3√5√3 by √3√3√3√3.
√5√3√3√3+(149)2√5√3√3√3+(149)2
Step 2.1.3.2
Raise √3√3 to the power of 11.
√5√3√31√3+(149)2√5√3√31√3+(149)2
Step 2.1.3.3
Raise √3√3 to the power of 11.
√5√3√31√31+(149)2√5√3√31√31+(149)2
Step 2.1.3.4
Use the power rule aman=am+naman=am+n to combine exponents.
√5√3√31+1+(149)2√5√3√31+1+(149)2
Step 2.1.3.5
Add 11 and 11.
√5√3√32+(149)2√5√3√32+(149)2
Step 2.1.3.6
Rewrite √32√32 as 33.
Step 2.1.3.6.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312.
√5√3(312)2+(149)2
Step 2.1.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
√5√3312⋅2+(149)2
Step 2.1.3.6.3
Combine 12 and 2.
√5√3322+(149)2
Step 2.1.3.6.4
Cancel the common factor of 2.
Step 2.1.3.6.4.1
Cancel the common factor.
√5√3322+(149)2
Step 2.1.3.6.4.2
Rewrite the expression.
√5√331+(149)2
√5√331+(149)2
Step 2.1.3.6.5
Evaluate the exponent.
√5√33+(149)2
√5√33+(149)2
√5√33+(149)2
Step 2.1.4
Simplify the numerator.
Step 2.1.4.1
Combine using the product rule for radicals.
√5⋅33+(149)2
Step 2.1.4.2
Multiply 5 by 3.
√153+(149)2
√153+(149)2
Step 2.1.5
Apply the product rule to 149.
√153+14292
Step 2.1.6
Raise 14 to the power of 2.
√153+19692
Step 2.1.7
Raise 9 to the power of 2.
√153+19681
√153+19681
Step 2.2
The expression is constant, which means it can be rewritten with a factor of x0. The degree is the largest exponent on the variable.
0
0
Step 3
A horizontal line does not rise or fall.
Straight line parallel to x-axis
Step 4