Finite Math Examples

Find the Complement sin(165)
Step 1
The complement of is the angle that when added to forms a right angle ().
Step 2
The exact value of is .
Tap for more steps...
Step 2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.

Step 2.2
Split into two angles where the values of the six trigonometric functions are known.

Step 2.3
Separate negation.

Step 2.4
Apply the difference of angles identity.

Step 2.5
The exact value of is .

Step 2.6
The exact value of is .

Step 2.7
The exact value of is .

Step 2.8
The exact value of is .

Step 2.9
Simplify .
Tap for more steps...
Step 2.9.1
Simplify each term.
Tap for more steps...
Step 2.9.1.1
Multiply .
Tap for more steps...
Step 2.9.1.1.1
Multiply by .

Step 2.9.1.1.2
Combine using the product rule for radicals.

Step 2.9.1.1.3
Multiply by .

Step 2.9.1.1.4
Multiply by .


Step 2.9.1.2
Multiply .
Tap for more steps...
Step 2.9.1.2.1
Multiply by .

Step 2.9.1.2.2
Multiply by .



Step 2.9.2
Combine the numerators over the common denominator.
Step 3
To write as a fraction with a common denominator, multiply by .
Step 4
Combine fractions.
Tap for more steps...
Step 4.1
Combine and .
Step 4.2
Combine the numerators over the common denominator.
Step 5
Simplify the numerator.
Tap for more steps...
Step 5.1
Multiply by .
Step 5.2
Apply the distributive property.
Step 5.3
Multiply .
Tap for more steps...
Step 5.3.1
Multiply by .
Step 5.3.2
Multiply by .
Step 6
The result can be shown in multiple forms.
Exact Form:
Decimal Form: