Finite Math Examples

Find the Equation Using Point-Slope Formula (-a+1,b-1) , (a+1,-b)
(-a+1,b-1) , (a+1,-b)
Step 1
Find the slope of the line between (-a+1,b-1) and (a+1,-b) using m=y2-y1x2-x1, which is the change of y over the change of x.
Tap for more steps...
Step 1.1
Slope is equal to the change in y over the change in x, or rise over run.
m=change in ychange in x
Step 1.2
The change in x is equal to the difference in x-coordinates (also called run), and the change in y is equal to the difference in y-coordinates (also called rise).
m=y2-y1x2-x1
Step 1.3
Substitute in the values of x and y into the equation to find the slope.
m=-b-(b-1)a+1-(-a+1)
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Simplify the numerator.
Tap for more steps...
Step 1.4.1.1
Apply the distributive property.
m=-b-b+1a+1-(-a+1)
Step 1.4.1.2
Multiply -1 by -1.
m=-b-b+1a+1-(-a+1)
Step 1.4.1.3
Subtract b from -b.
m=-2b+1a+1-(-a+1)
m=-2b+1a+1-(-a+1)
Step 1.4.2
Simplify the denominator.
Tap for more steps...
Step 1.4.2.1
Apply the distributive property.
m=-2b+1a+1+a-11
Step 1.4.2.2
Multiply --a.
Tap for more steps...
Step 1.4.2.2.1
Multiply -1 by -1.
m=-2b+1a+1+1a-11
Step 1.4.2.2.2
Multiply a by 1.
m=-2b+1a+1+a-11
m=-2b+1a+1+a-11
Step 1.4.2.3
Multiply -1 by 1.
m=-2b+1a+1+a-1
Step 1.4.2.4
Add a and a.
m=-2b+12a+1-1
Step 1.4.2.5
Subtract 1 from 1.
m=-2b+12a+0
Step 1.4.2.6
Add 2a and 0.
m=-2b+12a
m=-2b+12a
Step 1.4.3
Simplify with factoring out.
Tap for more steps...
Step 1.4.3.1
Factor -1 out of -2b.
m=-(2b)+12a
Step 1.4.3.2
Rewrite 1 as -1(-1).
m=-(2b)-1-12a
Step 1.4.3.3
Factor -1 out of -(2b)-1(-1).
m=-(2b-1)2a
Step 1.4.3.4
Simplify the expression.
Tap for more steps...
Step 1.4.3.4.1
Rewrite -(2b-1) as -1(2b-1).
m=-1(2b-1)2a
Step 1.4.3.4.2
Move the negative in front of the fraction.
m=-2b-12a
m=-2b-12a
m=-2b-12a
m=-2b-12a
m=-2b-12a
Step 2
Use the slope -2b-12a and a given point (-a+1,b-1) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(b-1)=-2b-12a(x-(-a+1))
Step 3
Simplify the equation and keep it in point-slope form.
y-b+1=-2b-12a(x+a-1)
Step 4
Solve for y.
Tap for more steps...
Step 4.1
Simplify -2b-12a(x+a-1).
Tap for more steps...
Step 4.1.1
Rewrite.
y-b+1=0+0-2b-12a(x+a-1)
Step 4.1.2
Simplify by adding zeros.
y-b+1=-2b-12a(x+a-1)
Step 4.1.3
Apply the distributive property.
y-b+1=-2b-12ax-2b-12aa-2b-12a-1
Step 4.1.4
Simplify.
Tap for more steps...
Step 4.1.4.1
Combine x and 2b-12a.
y-b+1=-x(2b-1)2a-2b-12aa-2b-12a-1
Step 4.1.4.2
Cancel the common factor of a.
Tap for more steps...
Step 4.1.4.2.1
Move the leading negative in -2b-12a into the numerator.
y-b+1=-x(2b-1)2a+-(2b-1)2aa-2b-12a-1
Step 4.1.4.2.2
Factor a out of 2a.
y-b+1=-x(2b-1)2a+-(2b-1)a2a-2b-12a-1
Step 4.1.4.2.3
Cancel the common factor.
y-b+1=-x(2b-1)2a+-(2b-1)a2a-2b-12a-1
Step 4.1.4.2.4
Rewrite the expression.
y-b+1=-x(2b-1)2a+-(2b-1)2-2b-12a-1
y-b+1=-x(2b-1)2a+-(2b-1)2-2b-12a-1
Step 4.1.4.3
Multiply -2b-12a-1.
Tap for more steps...
Step 4.1.4.3.1
Multiply -1 by -1.
y-b+1=-x(2b-1)2a+-(2b-1)2+12b-12a
Step 4.1.4.3.2
Multiply 2b-12a by 1.
y-b+1=-x(2b-1)2a+-(2b-1)2+2b-12a
y-b+1=-x(2b-1)2a+-(2b-1)2+2b-12a
y-b+1=-x(2b-1)2a+-(2b-1)2+2b-12a
Step 4.1.5
Move the negative in front of the fraction.
y-b+1=-x(2b-1)2a-2b-12+2b-12a
Step 4.1.6
To write -2b-12 as a fraction with a common denominator, multiply by aa.
y-b+1=-x(2b-1)2a-2b-12aa+2b-12a
Step 4.1.7
Simplify terms.
Tap for more steps...
Step 4.1.7.1
Multiply 2b-12 by aa.
y-b+1=-x(2b-1)2a-(2b-1)a2a+2b-12a
Step 4.1.7.2
Combine the numerators over the common denominator.
y-b+1=-x(2b-1)-(2b-1)a2a+2b-12a
y-b+1=-x(2b-1)-(2b-1)a2a+2b-12a
Step 4.1.8
Simplify the numerator.
Tap for more steps...
Step 4.1.8.1
Factor 2b-1 out of -x(2b-1)-(2b-1)a.
Tap for more steps...
Step 4.1.8.1.1
Factor 2b-1 out of -x(2b-1).
y-b+1=(2b-1)(-x)-(2b-1)a2a+2b-12a
Step 4.1.8.1.2
Factor 2b-1 out of -(2b-1)a.
y-b+1=(2b-1)(-x)+(2b-1)(-1a)2a+2b-12a
Step 4.1.8.1.3
Factor 2b-1 out of (2b-1)(-x)+(2b-1)(-1a).
y-b+1=(2b-1)(-x-1a)2a+2b-12a
y-b+1=(2b-1)(-x-1a)2a+2b-12a
Step 4.1.8.2
Rewrite -1a as -a.
y-b+1=(2b-1)(-x-a)2a+2b-12a
y-b+1=(2b-1)(-x-a)2a+2b-12a
Step 4.1.9
Combine the numerators over the common denominator.
y-b+1=(2b-1)(-x-a)+2b-12a
Step 4.1.10
Simplify the numerator.
Tap for more steps...
Step 4.1.10.1
Expand (2b-1)(-x-a) using the FOIL Method.
Tap for more steps...
Step 4.1.10.1.1
Apply the distributive property.
y-b+1=2b(-x-a)-1(-x-a)+2b-12a
Step 4.1.10.1.2
Apply the distributive property.
y-b+1=2b(-x)+2b(-a)-1(-x-a)+2b-12a
Step 4.1.10.1.3
Apply the distributive property.
y-b+1=2b(-x)+2b(-a)-1(-x)-1(-a)+2b-12a
y-b+1=2b(-x)+2b(-a)-1(-x)-1(-a)+2b-12a
Step 4.1.10.2
Simplify each term.
Tap for more steps...
Step 4.1.10.2.1
Rewrite using the commutative property of multiplication.
y-b+1=2-1bx+2b(-a)-1(-x)-1(-a)+2b-12a
Step 4.1.10.2.2
Multiply 2 by -1.
y-b+1=-2bx+2b(-a)-1(-x)-1(-a)+2b-12a
Step 4.1.10.2.3
Rewrite using the commutative property of multiplication.
y-b+1=-2bx+2-1ba-1(-x)-1(-a)+2b-12a
Step 4.1.10.2.4
Multiply 2 by -1.
y-b+1=-2bx-2ba-1(-x)-1(-a)+2b-12a
Step 4.1.10.2.5
Multiply -1(-x).
Tap for more steps...
Step 4.1.10.2.5.1
Multiply -1 by -1.
y-b+1=-2bx-2ba+1x-1(-a)+2b-12a
Step 4.1.10.2.5.2
Multiply x by 1.
y-b+1=-2bx-2ba+x-1(-a)+2b-12a
y-b+1=-2bx-2ba+x-1(-a)+2b-12a
Step 4.1.10.2.6
Multiply -1(-a).
Tap for more steps...
Step 4.1.10.2.6.1
Multiply -1 by -1.
y-b+1=-2bx-2ba+x+1a+2b-12a
Step 4.1.10.2.6.2
Multiply a by 1.
y-b+1=-2bx-2ba+x+a+2b-12a
y-b+1=-2bx-2ba+x+a+2b-12a
y-b+1=-2bx-2ba+x+a+2b-12a
y-b+1=-2bx-2ba+x+a+2b-12a
Step 4.1.11
Simplify with factoring out.
Tap for more steps...
Step 4.1.11.1
Factor -1 out of -2bx.
y-b+1=-(2bx)-2ba+x+a+2b-12a
Step 4.1.11.2
Factor -1 out of -2ba.
y-b+1=-(2bx)-(2ba)+x+a+2b-12a
Step 4.1.11.3
Factor -1 out of -(2bx)-(2ba).
y-b+1=-(2bx+2ba)+x+a+2b-12a
Step 4.1.11.4
Factor -1 out of x.
y-b+1=-(2bx+2ba)-1(-x)+a+2b-12a
Step 4.1.11.5
Factor -1 out of -(2bx+2ba)-1(-x).
y-b+1=-(2bx+2ba-x)+a+2b-12a
Step 4.1.11.6
Factor -1 out of a.
y-b+1=-(2bx+2ba-x)-1(-a)+2b-12a
Step 4.1.11.7
Factor -1 out of -(2bx+2ba-x)-1(-a).
y-b+1=-(2bx+2ba-x-a)+2b-12a
Step 4.1.11.8
Factor -1 out of 2b.
y-b+1=-(2bx+2ba-x-a)-(-2b)-12a
Step 4.1.11.9
Factor -1 out of -(2bx+2ba-x-a)-(-2b).
y-b+1=-(2bx+2ba-x-a-2b)-12a
Step 4.1.11.10
Rewrite -1 as -1(1).
y-b+1=-(2bx+2ba-x-a-2b)-1(1)2a
Step 4.1.11.11
Factor -1 out of -(2bx+2ba-x-a-2b)-1(1).
y-b+1=-(2bx+2ba-x-a-2b+1)2a
Step 4.1.11.12
Simplify the expression.
Tap for more steps...
Step 4.1.11.12.1
Rewrite -(2bx+2ba-x-a-2b+1) as -1(2bx+2ba-x-a-2b+1).
y-b+1=-1(2bx+2ba-x-a-2b+1)2a
Step 4.1.11.12.2
Move the negative in front of the fraction.
y-b+1=-2bx+2ba-x-a-2b+12a
y-b+1=-2bx+2ba-x-a-2b+12a
y-b+1=-2bx+2ba-x-a-2b+12a
y-b+1=-2bx+2ba-x-a-2b+12a
Step 4.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 4.2.1
Add b to both sides of the equation.
y+1=-2bx+2ba-x-a-2b+12a+b
Step 4.2.2
Subtract 1 from both sides of the equation.
y=-2bx+2ba-x-a-2b+12a+b-1
Step 4.2.3
Simplify each term.
Tap for more steps...
Step 4.2.3.1
Split the fraction 2bx+2ba-x-a-2b+12a into two fractions.
y=-(2bx+2ba-x-a-2b2a+12a)+b-1
Step 4.2.3.2
Simplify each term.
Tap for more steps...
Step 4.2.3.2.1
Split the fraction 2bx+2ba-x-a-2b2a into two fractions.
y=-(2bx+2ba-x-a2a+-2b2a+12a)+b-1
Step 4.2.3.2.2
Simplify each term.
Tap for more steps...
Step 4.2.3.2.2.1
Simplify the numerator.
Tap for more steps...
Step 4.2.3.2.2.1.1
Factor out the greatest common factor from each group.
Tap for more steps...
Step 4.2.3.2.2.1.1.1
Group the first two terms and the last two terms.
y=-((2bx+2ba)-x-a2a+-2b2a+12a)+b-1
Step 4.2.3.2.2.1.1.2
Factor out the greatest common factor (GCF) from each group.
y=-(2b(x+a)-(x+a)2a+-2b2a+12a)+b-1
y=-(2b(x+a)-(x+a)2a+-2b2a+12a)+b-1
Step 4.2.3.2.2.1.2
Factor the polynomial by factoring out the greatest common factor, x+a.
y=-((x+a)(2b-1)2a+-2b2a+12a)+b-1
y=-((x+a)(2b-1)2a+-2b2a+12a)+b-1
Step 4.2.3.2.2.2
Cancel the common factor of -2 and 2.
Tap for more steps...
Step 4.2.3.2.2.2.1
Factor 2 out of -2b.
y=-((x+a)(2b-1)2a+2(-b)2a+12a)+b-1
Step 4.2.3.2.2.2.2
Cancel the common factors.
Tap for more steps...
Step 4.2.3.2.2.2.2.1
Factor 2 out of 2a.
y=-((x+a)(2b-1)2a+2(-b)2(a)+12a)+b-1
Step 4.2.3.2.2.2.2.2
Cancel the common factor.
y=-((x+a)(2b-1)2a+2(-b)2a+12a)+b-1
Step 4.2.3.2.2.2.2.3
Rewrite the expression.
y=-((x+a)(2b-1)2a+-ba+12a)+b-1
y=-((x+a)(2b-1)2a+-ba+12a)+b-1
y=-((x+a)(2b-1)2a+-ba+12a)+b-1
Step 4.2.3.2.2.3
Move the negative in front of the fraction.
y=-((x+a)(2b-1)2a-ba+12a)+b-1
y=-((x+a)(2b-1)2a-ba+12a)+b-1
y=-((x+a)(2b-1)2a-ba+12a)+b-1
Step 4.2.3.3
Apply the distributive property.
y=-(x+a)(2b-1)2a--ba-12a+b-1
Step 4.2.3.4
Multiply --ba.
Tap for more steps...
Step 4.2.3.4.1
Multiply -1 by -1.
y=-(x+a)(2b-1)2a+1ba-12a+b-1
Step 4.2.3.4.2
Multiply ba by 1.
y=-(x+a)(2b-1)2a+ba-12a+b-1
y=-(x+a)(2b-1)2a+ba-12a+b-1
y=-(x+a)(2b-1)2a+ba-12a+b-1
y=-(x+a)(2b-1)2a+ba-12a+b-1
y=-(x+a)(2b-1)2a+ba-12a+b-1
Step 5
List the equation in different forms.
Slope-intercept form:
y=-(x+a)(2b-1)2a+ba-12a+b-1
Point-slope form:
y-b+1=-2b-12a(x+a-1)
Step 6
 [x2  12  π  xdx ]