Finite Math Examples

Solve Using an Augmented Matrix -4-9y-z=-20 , -8x-6y-2z=16 , 6x+9y+2=22
, ,
Step 1
Move variables to the left and constant terms to the right.
Tap for more steps...
Step 1.1
Move all terms not containing a variable to the right side of the equation.
Tap for more steps...
Step 1.1.1
Add to both sides of the equation.
Step 1.1.2
Add and .
Step 1.2
Move all terms not containing a variable to the right side of the equation.
Tap for more steps...
Step 1.2.1
Subtract from both sides of the equation.
Step 1.2.2
Subtract from .
Step 2
Write the system as a matrix.
Step 3
Find the reduced row echelon form.
Tap for more steps...
Step 3.1
Swap with to put a nonzero entry at .
Step 3.2
Multiply each element of by to make the entry at a .
Tap for more steps...
Step 3.2.1
Multiply each element of by to make the entry at a .
Step 3.2.2
Simplify .
Step 3.3
Perform the row operation to make the entry at a .
Tap for more steps...
Step 3.3.1
Perform the row operation to make the entry at a .
Step 3.3.2
Simplify .
Step 3.4
Multiply each element of by to make the entry at a .
Tap for more steps...
Step 3.4.1
Multiply each element of by to make the entry at a .
Step 3.4.2
Simplify .
Step 3.5
Perform the row operation to make the entry at a .
Tap for more steps...
Step 3.5.1
Perform the row operation to make the entry at a .
Step 3.5.2
Simplify .
Step 3.6
Multiply each element of by to make the entry at a .
Tap for more steps...
Step 3.6.1
Multiply each element of by to make the entry at a .
Step 3.6.2
Simplify .
Step 3.7
Perform the row operation to make the entry at a .
Tap for more steps...
Step 3.7.1
Perform the row operation to make the entry at a .
Step 3.7.2
Simplify .
Step 3.8
Perform the row operation to make the entry at a .
Tap for more steps...
Step 3.8.1
Perform the row operation to make the entry at a .
Step 3.8.2
Simplify .
Step 3.9
Perform the row operation to make the entry at a .
Tap for more steps...
Step 3.9.1
Perform the row operation to make the entry at a .
Step 3.9.2
Simplify .
Step 4
Use the result matrix to declare the final solution to the system of equations.
Step 5
The solution is the set of ordered pairs that make the system true.