Enter a problem...
Finite Math Examples
, ,
Step 1
Step 1.1
Replace all occurrences of in with .
Step 1.2
Simplify the right side.
Step 1.2.1
Simplify .
Step 1.2.1.1
Simplify each term.
Step 1.2.1.1.1
Apply the distributive property.
Step 1.2.1.1.2
Simplify.
Step 1.2.1.1.2.1
Multiply by .
Step 1.2.1.1.2.2
Multiply by .
Step 1.2.1.1.2.3
Multiply by .
Step 1.2.1.2
Simplify by adding terms.
Step 1.2.1.2.1
Subtract from .
Step 1.2.1.2.2
Add and .
Step 1.3
Replace all occurrences of in with .
Step 1.4
Simplify the right side.
Step 1.4.1
Simplify .
Step 1.4.1.1
Simplify each term.
Step 1.4.1.1.1
Apply the distributive property.
Step 1.4.1.1.2
Simplify.
Step 1.4.1.1.2.1
Multiply by .
Step 1.4.1.1.2.2
Multiply by .
Step 1.4.1.1.2.3
Multiply by .
Step 1.4.1.2
Add and .
Step 2
Step 2.1
Move all terms containing to the left side of the equation.
Step 2.1.1
Subtract from both sides of the equation.
Step 2.1.2
Subtract from .
Step 2.2
Divide each term in by and simplify.
Step 2.2.1
Divide each term in by .
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Cancel the common factor of .
Step 2.2.2.1.1
Cancel the common factor.
Step 2.2.2.1.2
Divide by .
Step 2.2.3
Simplify the right side.
Step 2.2.3.1
Simplify each term.
Step 2.2.3.1.1
Move the negative in front of the fraction.
Step 2.2.3.1.2
Dividing two negative values results in a positive value.
Step 3
Step 3.1
Replace all occurrences of in with .
Step 3.2
Simplify the right side.
Step 3.2.1
Simplify .
Step 3.2.1.1
Simplify each term.
Step 3.2.1.1.1
Apply the distributive property.
Step 3.2.1.1.2
Multiply .
Step 3.2.1.1.2.1
Multiply by .
Step 3.2.1.1.2.2
Combine and .
Step 3.2.1.1.2.3
Multiply by .
Step 3.2.1.1.3
Multiply .
Step 3.2.1.1.3.1
Combine and .
Step 3.2.1.1.3.2
Multiply by .
Step 3.2.1.1.4
Move the negative in front of the fraction.
Step 3.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.2.1.3
Combine and .
Step 3.2.1.4
Combine the numerators over the common denominator.
Step 3.2.1.5
Combine the numerators over the common denominator.
Step 3.2.1.6
Multiply by .
Step 3.2.1.7
Subtract from .
Step 3.2.1.8
To write as a fraction with a common denominator, multiply by .
Step 3.2.1.9
Simplify terms.
Step 3.2.1.9.1
Combine and .
Step 3.2.1.9.2
Combine the numerators over the common denominator.
Step 3.2.1.10
Simplify the numerator.
Step 3.2.1.10.1
Multiply by .
Step 3.2.1.10.2
Add and .
Step 3.2.1.10.3
Factor out of .
Step 3.2.1.10.3.1
Factor out of .
Step 3.2.1.10.3.2
Factor out of .
Step 3.2.1.10.3.3
Factor out of .
Step 3.2.1.11
Simplify with factoring out.
Step 3.2.1.11.1
Factor out of .
Step 3.2.1.11.2
Rewrite as .
Step 3.2.1.11.3
Factor out of .
Step 3.2.1.11.4
Simplify the expression.
Step 3.2.1.11.4.1
Rewrite as .
Step 3.2.1.11.4.2
Move the negative in front of the fraction.
Step 3.3
Replace all occurrences of in with .
Step 3.4
Simplify the right side.
Step 3.4.1
Simplify .
Step 3.4.1.1
Simplify each term.
Step 3.4.1.1.1
Apply the distributive property.
Step 3.4.1.1.2
Multiply .
Step 3.4.1.1.2.1
Multiply by .
Step 3.4.1.1.2.2
Combine and .
Step 3.4.1.1.2.3
Multiply by .
Step 3.4.1.1.3
Multiply .
Step 3.4.1.1.3.1
Combine and .
Step 3.4.1.1.3.2
Multiply by .
Step 3.4.1.1.4
Move the negative in front of the fraction.
Step 3.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.4.1.3
Combine and .
Step 3.4.1.4
Combine the numerators over the common denominator.
Step 3.4.1.5
Combine the numerators over the common denominator.
Step 3.4.1.6
Multiply by .
Step 3.4.1.7
Add and .
Step 3.4.1.8
Factor out of .
Step 3.4.1.8.1
Factor out of .
Step 3.4.1.8.2
Factor out of .
Step 3.4.1.8.3
Factor out of .
Step 3.4.1.9
To write as a fraction with a common denominator, multiply by .
Step 3.4.1.10
Simplify terms.
Step 3.4.1.10.1
Combine and .
Step 3.4.1.10.2
Combine the numerators over the common denominator.
Step 3.4.1.11
Simplify the numerator.
Step 3.4.1.11.1
Multiply by .
Step 3.4.1.11.2
Apply the distributive property.
Step 3.4.1.11.3
Multiply by .
Step 3.4.1.11.4
Multiply by .
Step 3.4.1.11.5
Subtract from .
Step 4
Step 4.1
Multiply both sides by .
Step 4.2
Simplify.
Step 4.2.1
Simplify the left side.
Step 4.2.1.1
Move to the left of .
Step 4.2.2
Simplify the right side.
Step 4.2.2.1
Simplify .
Step 4.2.2.1.1
Cancel the common factor of .
Step 4.2.2.1.1.1
Move the leading negative in into the numerator.
Step 4.2.2.1.1.2
Cancel the common factor.
Step 4.2.2.1.1.3
Rewrite the expression.
Step 4.2.2.1.2
Apply the distributive property.
Step 4.2.2.1.3
Multiply by .
Step 4.3
Solve for .
Step 4.3.1
Move all terms containing to the left side of the equation.
Step 4.3.1.1
Add to both sides of the equation.
Step 4.3.1.2
Add and .
Step 4.3.2
Divide each term in by and simplify.
Step 4.3.2.1
Divide each term in by .
Step 4.3.2.2
Simplify the left side.
Step 4.3.2.2.1
Cancel the common factor of .
Step 4.3.2.2.1.1
Cancel the common factor.
Step 4.3.2.2.1.2
Divide by .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Simplify the numerator.
Step 5.2.1.1.1
Multiply .
Step 5.2.1.1.1.1
Combine and .
Step 5.2.1.1.1.2
Multiply by .
Step 5.2.1.1.2
To write as a fraction with a common denominator, multiply by .
Step 5.2.1.1.3
Combine and .
Step 5.2.1.1.4
Combine the numerators over the common denominator.
Step 5.2.1.1.5
Simplify the numerator.
Step 5.2.1.1.5.1
Multiply by .
Step 5.2.1.1.5.2
Subtract from .
Step 5.2.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 5.2.1.3
Cancel the common factor of .
Step 5.2.1.3.1
Factor out of .
Step 5.2.1.3.2
Cancel the common factor.
Step 5.2.1.3.3
Rewrite the expression.
Step 5.3
Replace all occurrences of in with .
Step 5.4
Simplify the right side.
Step 5.4.1
Simplify .
Step 5.4.1.1
Combine the numerators over the common denominator.
Step 5.4.1.2
Simplify each term.
Step 5.4.1.2.1
Multiply .
Step 5.4.1.2.1.1
Combine and .
Step 5.4.1.2.1.2
Multiply by .
Step 5.4.1.2.2
Move the negative in front of the fraction.
Step 5.4.1.3
To write as a fraction with a common denominator, multiply by .
Step 5.4.1.4
Combine and .
Step 5.4.1.5
Combine the numerators over the common denominator.
Step 5.4.1.6
Simplify the numerator.
Step 5.4.1.6.1
Multiply by .
Step 5.4.1.6.2
Add and .
Step 5.4.1.7
Move the negative in front of the fraction.
Step 5.4.1.8
Multiply the numerator by the reciprocal of the denominator.
Step 5.4.1.9
Cancel the common factor of .
Step 5.4.1.9.1
Move the leading negative in into the numerator.
Step 5.4.1.9.2
Factor out of .
Step 5.4.1.9.3
Cancel the common factor.
Step 5.4.1.9.4
Rewrite the expression.
Step 5.4.1.10
Move the negative in front of the fraction.
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form: