Enter a problem...
Finite Math Examples
y=3xy=3x , y=12x+212y=12x+212
Step 1
Eliminate the equal sides of each equation and combine.
3x=12x+2123x=12x+212
Step 2
Step 2.1
Simplify the right side.
Step 2.1.1
Simplify 12x+21212x+212.
Step 2.1.1.1
Convert 212212 to an improper fraction.
Step 2.1.1.1.1
A mixed number is an addition of its whole and fractional parts.
3x=12x+2+123x=12x+2+12
Step 2.1.1.1.2
Add 22 and 1212.
Step 2.1.1.1.2.1
To write 22 as a fraction with a common denominator, multiply by 2222.
3x=12x+2⋅22+123x=12x+2⋅22+12
Step 2.1.1.1.2.2
Combine 22 and 2222.
3x=12x+2⋅22+123x=12x+2⋅22+12
Step 2.1.1.1.2.3
Combine the numerators over the common denominator.
3x=12x+2⋅2+123x=12x+2⋅2+12
Step 2.1.1.1.2.4
Simplify the numerator.
Step 2.1.1.1.2.4.1
Multiply 22 by 22.
3x=12x+4+123x=12x+4+12
Step 2.1.1.1.2.4.2
Add 44 and 11.
3x=12x+523x=12x+52
3x=12x+523x=12x+52
3x=12x+523x=12x+52
3x=12x+523x=12x+52
Step 2.1.1.2
Combine 1212 and xx.
3x=x2+523x=x2+52
3x=x2+523x=x2+52
3x=x2+523x=x2+52
Step 2.2
Move all terms containing xx to the left side of the equation.
Step 2.2.1
Subtract x2x2 from both sides of the equation.
3x-x2=523x−x2=52
Step 2.2.2
To write 3x3x as a fraction with a common denominator, multiply by 2222.
3x⋅22-x2=523x⋅22−x2=52
Step 2.2.3
Combine 3x3x and 2222.
3x⋅22-x2=523x⋅22−x2=52
Step 2.2.4
Combine the numerators over the common denominator.
3x⋅2-x2=523x⋅2−x2=52
Step 2.2.5
Simplify the numerator.
Step 2.2.5.1
Factor xx out of 3x⋅2-x3x⋅2−x.
Step 2.2.5.1.1
Factor xx out of 3x⋅23x⋅2.
x(3⋅2)-x2=52x(3⋅2)−x2=52
Step 2.2.5.1.2
Factor xx out of -x−x.
x(3⋅2)+x⋅-12=52x(3⋅2)+x⋅−12=52
Step 2.2.5.1.3
Factor xx out of x(3⋅2)+x⋅-1x(3⋅2)+x⋅−1.
x(3⋅2-1)2=52x(3⋅2−1)2=52
x(3⋅2-1)2=52x(3⋅2−1)2=52
Step 2.2.5.2
Multiply 33 by 22.
x(6-1)2=52x(6−1)2=52
Step 2.2.5.3
Subtract 11 from 66.
x⋅52=52x⋅52=52
x⋅52=52x⋅52=52
Step 2.2.6
Move 55 to the left of xx.
5x2=525x2=52
5x2=525x2=52
Step 2.3
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
5x=55x=5
Step 2.4
Divide each term in 5x=55x=5 by 55 and simplify.
Step 2.4.1
Divide each term in 5x=55x=5 by 55.
5x5=555x5=55
Step 2.4.2
Simplify the left side.
Step 2.4.2.1
Cancel the common factor of 55.
Step 2.4.2.1.1
Cancel the common factor.
5x5=55
Step 2.4.2.1.2
Divide x by 1.
x=55
x=55
x=55
Step 2.4.3
Simplify the right side.
Step 2.4.3.1
Divide 5 by 5.
x=1
x=1
x=1
x=1
Step 3
Step 3.1
Substitute 1 for x.
y=12⋅(1)+212
Step 3.2
Substitute 1 for x in y=12⋅(1)+212 and solve for y.
Step 3.2.1
Multiply 12 by 1.
y=12⋅1+212
Step 3.2.2
Simplify 12⋅1+212.
Step 3.2.2.1
Convert 212 to an improper fraction.
Step 3.2.2.1.1
A mixed number is an addition of its whole and fractional parts.
y=12⋅1+2+12
Step 3.2.2.1.2
Add 2 and 12.
Step 3.2.2.1.2.1
To write 2 as a fraction with a common denominator, multiply by 22.
y=12⋅1+2⋅22+12
Step 3.2.2.1.2.2
Combine 2 and 22.
y=12⋅1+2⋅22+12
Step 3.2.2.1.2.3
Combine the numerators over the common denominator.
y=12⋅1+2⋅2+12
Step 3.2.2.1.2.4
Simplify the numerator.
Step 3.2.2.1.2.4.1
Multiply 2 by 2.
y=12⋅1+4+12
Step 3.2.2.1.2.4.2
Add 4 and 1.
y=12⋅1+52
y=12⋅1+52
y=12⋅1+52
y=12⋅1+52
Step 3.2.2.2
Multiply 12 by 1.
y=12+52
Step 3.2.2.3
Combine the numerators over the common denominator.
y=1+52
Step 3.2.2.4
Simplify the expression.
Step 3.2.2.4.1
Add 1 and 5.
y=62
Step 3.2.2.4.2
Divide 6 by 2.
y=3
y=3
y=3
y=3
y=3
Step 4
The solution to the system is the complete set of ordered pairs that are valid solutions.
(1,3)
Step 5
The result can be shown in multiple forms.
Point Form:
(1,3)
Equation Form:
x=1,y=3
Step 6