Enter a problem...
Finite Math Examples
,
Step 1
Step 1.1
Add to both sides of the equation.
Step 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 1.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.3.1
First, use the positive value of the to find the first solution.
Step 1.3.2
Next, use the negative value of the to find the second solution.
Step 1.3.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2
Step 2.1
Replace all occurrences of with in each equation.
Step 2.1.1
Replace all occurrences of in with .
Step 2.1.2
Simplify the left side.
Step 2.1.2.1
Simplify .
Step 2.1.2.1.1
Simplify each term.
Step 2.1.2.1.1.1
Rewrite as .
Step 2.1.2.1.1.1.1
Use to rewrite as .
Step 2.1.2.1.1.1.2
Apply the power rule and multiply exponents, .
Step 2.1.2.1.1.1.3
Combine and .
Step 2.1.2.1.1.1.4
Cancel the common factor of .
Step 2.1.2.1.1.1.4.1
Cancel the common factor.
Step 2.1.2.1.1.1.4.2
Rewrite the expression.
Step 2.1.2.1.1.1.5
Simplify.
Step 2.1.2.1.1.2
Apply the distributive property.
Step 2.1.2.1.1.3
Multiply by .
Step 2.1.2.1.1.4
Multiply by .
Step 2.1.2.1.2
Add and .
Step 2.2
Solve for in .
Step 2.2.1
Move all terms not containing to the right side of the equation.
Step 2.2.1.1
Subtract from both sides of the equation.
Step 2.2.1.2
Subtract from .
Step 2.2.2
Divide each term in by and simplify.
Step 2.2.2.1
Divide each term in by .
Step 2.2.2.2
Simplify the left side.
Step 2.2.2.2.1
Cancel the common factor of .
Step 2.2.2.2.1.1
Cancel the common factor.
Step 2.2.2.2.1.2
Divide by .
Step 2.2.2.3
Simplify the right side.
Step 2.2.2.3.1
Move the negative in front of the fraction.
Step 2.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.2.4
Simplify .
Step 2.2.4.1
Rewrite as .
Step 2.2.4.2
Pull terms out from under the radical.
Step 2.2.4.3
Rewrite as .
Step 2.2.4.4
Multiply by .
Step 2.2.4.5
Combine and simplify the denominator.
Step 2.2.4.5.1
Multiply by .
Step 2.2.4.5.2
Raise to the power of .
Step 2.2.4.5.3
Raise to the power of .
Step 2.2.4.5.4
Use the power rule to combine exponents.
Step 2.2.4.5.5
Add and .
Step 2.2.4.5.6
Rewrite as .
Step 2.2.4.5.6.1
Use to rewrite as .
Step 2.2.4.5.6.2
Apply the power rule and multiply exponents, .
Step 2.2.4.5.6.3
Combine and .
Step 2.2.4.5.6.4
Cancel the common factor of .
Step 2.2.4.5.6.4.1
Cancel the common factor.
Step 2.2.4.5.6.4.2
Rewrite the expression.
Step 2.2.4.5.6.5
Evaluate the exponent.
Step 2.2.4.6
Simplify the numerator.
Step 2.2.4.6.1
Combine using the product rule for radicals.
Step 2.2.4.6.2
Multiply by .
Step 2.2.4.7
Combine and .
Step 2.2.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.2.5.1
First, use the positive value of the to find the first solution.
Step 2.2.5.2
Next, use the negative value of the to find the second solution.
Step 2.2.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.3
Replace all occurrences of with in each equation.
Step 2.3.1
Replace all occurrences of in with .
Step 2.3.2
Simplify the right side.
Step 2.3.2.1
Simplify .
Step 2.3.2.1.1
Use the power rule to distribute the exponent.
Step 2.3.2.1.1.1
Apply the product rule to .
Step 2.3.2.1.1.2
Apply the product rule to .
Step 2.3.2.1.2
Simplify the numerator.
Step 2.3.2.1.2.1
Rewrite as .
Step 2.3.2.1.2.2
Rewrite as .
Step 2.3.2.1.2.2.1
Use to rewrite as .
Step 2.3.2.1.2.2.2
Apply the power rule and multiply exponents, .
Step 2.3.2.1.2.2.3
Combine and .
Step 2.3.2.1.2.2.4
Cancel the common factor of .
Step 2.3.2.1.2.2.4.1
Cancel the common factor.
Step 2.3.2.1.2.2.4.2
Rewrite the expression.
Step 2.3.2.1.2.2.5
Evaluate the exponent.
Step 2.3.2.1.3
Reduce the expression by cancelling the common factors.
Step 2.3.2.1.3.1
Raise to the power of .
Step 2.3.2.1.3.2
Multiply by .
Step 2.3.2.1.3.3
Cancel the common factor of and .
Step 2.3.2.1.3.3.1
Factor out of .
Step 2.3.2.1.3.3.2
Cancel the common factors.
Step 2.3.2.1.3.3.2.1
Factor out of .
Step 2.3.2.1.3.3.2.2
Cancel the common factor.
Step 2.3.2.1.3.3.2.3
Rewrite the expression.
Step 2.3.2.1.3.4
Move the negative in front of the fraction.
Step 2.3.2.1.4
Multiply .
Step 2.3.2.1.4.1
Multiply by .
Step 2.3.2.1.4.2
Combine and .
Step 2.3.2.1.4.3
Multiply by .
Step 2.3.2.1.5
Move the negative in front of the fraction.
Step 2.3.2.1.6
To write as a fraction with a common denominator, multiply by .
Step 2.3.2.1.7
Combine and .
Step 2.3.2.1.8
Combine the numerators over the common denominator.
Step 2.3.2.1.9
Simplify the numerator.
Step 2.3.2.1.9.1
Multiply by .
Step 2.3.2.1.9.2
Subtract from .
Step 2.3.2.1.10
Rewrite as .
Step 2.3.2.1.11
Multiply by .
Step 2.3.2.1.12
Combine and simplify the denominator.
Step 2.3.2.1.12.1
Multiply by .
Step 2.3.2.1.12.2
Raise to the power of .
Step 2.3.2.1.12.3
Raise to the power of .
Step 2.3.2.1.12.4
Use the power rule to combine exponents.
Step 2.3.2.1.12.5
Add and .
Step 2.3.2.1.12.6
Rewrite as .
Step 2.3.2.1.12.6.1
Use to rewrite as .
Step 2.3.2.1.12.6.2
Apply the power rule and multiply exponents, .
Step 2.3.2.1.12.6.3
Combine and .
Step 2.3.2.1.12.6.4
Cancel the common factor of .
Step 2.3.2.1.12.6.4.1
Cancel the common factor.
Step 2.3.2.1.12.6.4.2
Rewrite the expression.
Step 2.3.2.1.12.6.5
Evaluate the exponent.
Step 2.3.2.1.13
Simplify the numerator.
Step 2.3.2.1.13.1
Combine using the product rule for radicals.
Step 2.3.2.1.13.2
Multiply by .
Step 2.4
Replace all occurrences of with in each equation.
Step 2.4.1
Replace all occurrences of in with .
Step 2.4.2
Simplify the right side.
Step 2.4.2.1
Simplify .
Step 2.4.2.1.1
Use the power rule to distribute the exponent.
Step 2.4.2.1.1.1
Apply the product rule to .
Step 2.4.2.1.1.2
Apply the product rule to .
Step 2.4.2.1.1.3
Apply the product rule to .
Step 2.4.2.1.2
Simplify the expression.
Step 2.4.2.1.2.1
Raise to the power of .
Step 2.4.2.1.2.2
Multiply by .
Step 2.4.2.1.3
Simplify the numerator.
Step 2.4.2.1.3.1
Rewrite as .
Step 2.4.2.1.3.2
Rewrite as .
Step 2.4.2.1.3.2.1
Use to rewrite as .
Step 2.4.2.1.3.2.2
Apply the power rule and multiply exponents, .
Step 2.4.2.1.3.2.3
Combine and .
Step 2.4.2.1.3.2.4
Cancel the common factor of .
Step 2.4.2.1.3.2.4.1
Cancel the common factor.
Step 2.4.2.1.3.2.4.2
Rewrite the expression.
Step 2.4.2.1.3.2.5
Evaluate the exponent.
Step 2.4.2.1.4
Reduce the expression by cancelling the common factors.
Step 2.4.2.1.4.1
Raise to the power of .
Step 2.4.2.1.4.2
Multiply by .
Step 2.4.2.1.4.3
Cancel the common factor of and .
Step 2.4.2.1.4.3.1
Factor out of .
Step 2.4.2.1.4.3.2
Cancel the common factors.
Step 2.4.2.1.4.3.2.1
Factor out of .
Step 2.4.2.1.4.3.2.2
Cancel the common factor.
Step 2.4.2.1.4.3.2.3
Rewrite the expression.
Step 2.4.2.1.4.4
Move the negative in front of the fraction.
Step 2.4.2.1.5
Multiply .
Step 2.4.2.1.5.1
Multiply by .
Step 2.4.2.1.5.2
Combine and .
Step 2.4.2.1.5.3
Multiply by .
Step 2.4.2.1.6
Move the negative in front of the fraction.
Step 2.4.2.1.7
To write as a fraction with a common denominator, multiply by .
Step 2.4.2.1.8
Combine and .
Step 2.4.2.1.9
Combine the numerators over the common denominator.
Step 2.4.2.1.10
Simplify the numerator.
Step 2.4.2.1.10.1
Multiply by .
Step 2.4.2.1.10.2
Subtract from .
Step 2.4.2.1.11
Rewrite as .
Step 2.4.2.1.12
Multiply by .
Step 2.4.2.1.13
Combine and simplify the denominator.
Step 2.4.2.1.13.1
Multiply by .
Step 2.4.2.1.13.2
Raise to the power of .
Step 2.4.2.1.13.3
Raise to the power of .
Step 2.4.2.1.13.4
Use the power rule to combine exponents.
Step 2.4.2.1.13.5
Add and .
Step 2.4.2.1.13.6
Rewrite as .
Step 2.4.2.1.13.6.1
Use to rewrite as .
Step 2.4.2.1.13.6.2
Apply the power rule and multiply exponents, .
Step 2.4.2.1.13.6.3
Combine and .
Step 2.4.2.1.13.6.4
Cancel the common factor of .
Step 2.4.2.1.13.6.4.1
Cancel the common factor.
Step 2.4.2.1.13.6.4.2
Rewrite the expression.
Step 2.4.2.1.13.6.5
Evaluate the exponent.
Step 2.4.2.1.14
Simplify the numerator.
Step 2.4.2.1.14.1
Combine using the product rule for radicals.
Step 2.4.2.1.14.2
Multiply by .
Step 3
Step 3.1
Replace all occurrences of with in each equation.
Step 3.1.1
Replace all occurrences of in with .
Step 3.1.2
Simplify the left side.
Step 3.1.2.1
Simplify .
Step 3.1.2.1.1
Simplify each term.
Step 3.1.2.1.1.1
Apply the product rule to .
Step 3.1.2.1.1.2
Raise to the power of .
Step 3.1.2.1.1.3
Multiply by .
Step 3.1.2.1.1.4
Rewrite as .
Step 3.1.2.1.1.4.1
Use to rewrite as .
Step 3.1.2.1.1.4.2
Apply the power rule and multiply exponents, .
Step 3.1.2.1.1.4.3
Combine and .
Step 3.1.2.1.1.4.4
Cancel the common factor of .
Step 3.1.2.1.1.4.4.1
Cancel the common factor.
Step 3.1.2.1.1.4.4.2
Rewrite the expression.
Step 3.1.2.1.1.4.5
Simplify.
Step 3.1.2.1.1.5
Apply the distributive property.
Step 3.1.2.1.1.6
Multiply by .
Step 3.1.2.1.1.7
Multiply by .
Step 3.1.2.1.2
Add and .
Step 3.2
Solve for in .
Step 3.2.1
Move all terms not containing to the right side of the equation.
Step 3.2.1.1
Subtract from both sides of the equation.
Step 3.2.1.2
Subtract from .
Step 3.2.2
Divide each term in by and simplify.
Step 3.2.2.1
Divide each term in by .
Step 3.2.2.2
Simplify the left side.
Step 3.2.2.2.1
Cancel the common factor of .
Step 3.2.2.2.1.1
Cancel the common factor.
Step 3.2.2.2.1.2
Divide by .
Step 3.2.2.3
Simplify the right side.
Step 3.2.2.3.1
Move the negative in front of the fraction.
Step 3.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.2.4
Simplify .
Step 3.2.4.1
Rewrite as .
Step 3.2.4.2
Pull terms out from under the radical.
Step 3.2.4.3
Rewrite as .
Step 3.2.4.4
Multiply by .
Step 3.2.4.5
Combine and simplify the denominator.
Step 3.2.4.5.1
Multiply by .
Step 3.2.4.5.2
Raise to the power of .
Step 3.2.4.5.3
Raise to the power of .
Step 3.2.4.5.4
Use the power rule to combine exponents.
Step 3.2.4.5.5
Add and .
Step 3.2.4.5.6
Rewrite as .
Step 3.2.4.5.6.1
Use to rewrite as .
Step 3.2.4.5.6.2
Apply the power rule and multiply exponents, .
Step 3.2.4.5.6.3
Combine and .
Step 3.2.4.5.6.4
Cancel the common factor of .
Step 3.2.4.5.6.4.1
Cancel the common factor.
Step 3.2.4.5.6.4.2
Rewrite the expression.
Step 3.2.4.5.6.5
Evaluate the exponent.
Step 3.2.4.6
Simplify the numerator.
Step 3.2.4.6.1
Combine using the product rule for radicals.
Step 3.2.4.6.2
Multiply by .
Step 3.2.4.7
Combine and .
Step 3.2.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.2.5.1
First, use the positive value of the to find the first solution.
Step 3.2.5.2
Next, use the negative value of the to find the second solution.
Step 3.2.5.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.3
Replace all occurrences of with in each equation.
Step 3.3.1
Replace all occurrences of in with .
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Simplify .
Step 3.3.2.1.1
Use the power rule to distribute the exponent.
Step 3.3.2.1.1.1
Apply the product rule to .
Step 3.3.2.1.1.2
Apply the product rule to .
Step 3.3.2.1.2
Simplify the numerator.
Step 3.3.2.1.2.1
Rewrite as .
Step 3.3.2.1.2.2
Rewrite as .
Step 3.3.2.1.2.2.1
Use to rewrite as .
Step 3.3.2.1.2.2.2
Apply the power rule and multiply exponents, .
Step 3.3.2.1.2.2.3
Combine and .
Step 3.3.2.1.2.2.4
Cancel the common factor of .
Step 3.3.2.1.2.2.4.1
Cancel the common factor.
Step 3.3.2.1.2.2.4.2
Rewrite the expression.
Step 3.3.2.1.2.2.5
Evaluate the exponent.
Step 3.3.2.1.3
Reduce the expression by cancelling the common factors.
Step 3.3.2.1.3.1
Raise to the power of .
Step 3.3.2.1.3.2
Multiply by .
Step 3.3.2.1.3.3
Cancel the common factor of and .
Step 3.3.2.1.3.3.1
Factor out of .
Step 3.3.2.1.3.3.2
Cancel the common factors.
Step 3.3.2.1.3.3.2.1
Factor out of .
Step 3.3.2.1.3.3.2.2
Cancel the common factor.
Step 3.3.2.1.3.3.2.3
Rewrite the expression.
Step 3.3.2.1.3.4
Move the negative in front of the fraction.
Step 3.3.2.1.4
Multiply .
Step 3.3.2.1.4.1
Multiply by .
Step 3.3.2.1.4.2
Combine and .
Step 3.3.2.1.4.3
Multiply by .
Step 3.3.2.1.5
Move the negative in front of the fraction.
Step 3.3.2.1.6
To write as a fraction with a common denominator, multiply by .
Step 3.3.2.1.7
Combine and .
Step 3.3.2.1.8
Combine the numerators over the common denominator.
Step 3.3.2.1.9
Simplify the numerator.
Step 3.3.2.1.9.1
Multiply by .
Step 3.3.2.1.9.2
Subtract from .
Step 3.3.2.1.10
Rewrite as .
Step 3.3.2.1.11
Multiply by .
Step 3.3.2.1.12
Combine and simplify the denominator.
Step 3.3.2.1.12.1
Multiply by .
Step 3.3.2.1.12.2
Raise to the power of .
Step 3.3.2.1.12.3
Raise to the power of .
Step 3.3.2.1.12.4
Use the power rule to combine exponents.
Step 3.3.2.1.12.5
Add and .
Step 3.3.2.1.12.6
Rewrite as .
Step 3.3.2.1.12.6.1
Use to rewrite as .
Step 3.3.2.1.12.6.2
Apply the power rule and multiply exponents, .
Step 3.3.2.1.12.6.3
Combine and .
Step 3.3.2.1.12.6.4
Cancel the common factor of .
Step 3.3.2.1.12.6.4.1
Cancel the common factor.
Step 3.3.2.1.12.6.4.2
Rewrite the expression.
Step 3.3.2.1.12.6.5
Evaluate the exponent.
Step 3.3.2.1.13
Simplify the numerator.
Step 3.3.2.1.13.1
Combine using the product rule for radicals.
Step 3.3.2.1.13.2
Multiply by .
Step 3.4
Replace all occurrences of with in each equation.
Step 3.4.1
Replace all occurrences of in with .
Step 3.4.2
Simplify the right side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Use the power rule to distribute the exponent.
Step 3.4.2.1.1.1
Apply the product rule to .
Step 3.4.2.1.1.2
Apply the product rule to .
Step 3.4.2.1.1.3
Apply the product rule to .
Step 3.4.2.1.2
Simplify the expression.
Step 3.4.2.1.2.1
Raise to the power of .
Step 3.4.2.1.2.2
Multiply by .
Step 3.4.2.1.3
Simplify the numerator.
Step 3.4.2.1.3.1
Rewrite as .
Step 3.4.2.1.3.2
Rewrite as .
Step 3.4.2.1.3.2.1
Use to rewrite as .
Step 3.4.2.1.3.2.2
Apply the power rule and multiply exponents, .
Step 3.4.2.1.3.2.3
Combine and .
Step 3.4.2.1.3.2.4
Cancel the common factor of .
Step 3.4.2.1.3.2.4.1
Cancel the common factor.
Step 3.4.2.1.3.2.4.2
Rewrite the expression.
Step 3.4.2.1.3.2.5
Evaluate the exponent.
Step 3.4.2.1.4
Reduce the expression by cancelling the common factors.
Step 3.4.2.1.4.1
Raise to the power of .
Step 3.4.2.1.4.2
Multiply by .
Step 3.4.2.1.4.3
Cancel the common factor of and .
Step 3.4.2.1.4.3.1
Factor out of .
Step 3.4.2.1.4.3.2
Cancel the common factors.
Step 3.4.2.1.4.3.2.1
Factor out of .
Step 3.4.2.1.4.3.2.2
Cancel the common factor.
Step 3.4.2.1.4.3.2.3
Rewrite the expression.
Step 3.4.2.1.4.4
Move the negative in front of the fraction.
Step 3.4.2.1.5
Multiply .
Step 3.4.2.1.5.1
Multiply by .
Step 3.4.2.1.5.2
Combine and .
Step 3.4.2.1.5.3
Multiply by .
Step 3.4.2.1.6
Move the negative in front of the fraction.
Step 3.4.2.1.7
To write as a fraction with a common denominator, multiply by .
Step 3.4.2.1.8
Combine and .
Step 3.4.2.1.9
Combine the numerators over the common denominator.
Step 3.4.2.1.10
Simplify the numerator.
Step 3.4.2.1.10.1
Multiply by .
Step 3.4.2.1.10.2
Subtract from .
Step 3.4.2.1.11
Rewrite as .
Step 3.4.2.1.12
Multiply by .
Step 3.4.2.1.13
Combine and simplify the denominator.
Step 3.4.2.1.13.1
Multiply by .
Step 3.4.2.1.13.2
Raise to the power of .
Step 3.4.2.1.13.3
Raise to the power of .
Step 3.4.2.1.13.4
Use the power rule to combine exponents.
Step 3.4.2.1.13.5
Add and .
Step 3.4.2.1.13.6
Rewrite as .
Step 3.4.2.1.13.6.1
Use to rewrite as .
Step 3.4.2.1.13.6.2
Apply the power rule and multiply exponents, .
Step 3.4.2.1.13.6.3
Combine and .
Step 3.4.2.1.13.6.4
Cancel the common factor of .
Step 3.4.2.1.13.6.4.1
Cancel the common factor.
Step 3.4.2.1.13.6.4.2
Rewrite the expression.
Step 3.4.2.1.13.6.5
Evaluate the exponent.
Step 3.4.2.1.14
Simplify the numerator.
Step 3.4.2.1.14.1
Combine using the product rule for radicals.
Step 3.4.2.1.14.2
Multiply by .
Step 4
List all of the solutions.
Step 5