Enter a problem...
Finite Math Examples
3x-4y=12 , x+2y=4
Step 1
Subtract 2y from both sides of the equation.
x=4-2y
3x-4y=12
Step 2
Step 2.1
Replace all occurrences of x in 3x-4y=12 with 4-2y.
3(4-2y)-4y=12
x=4-2y
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify 3(4-2y)-4y.
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
3⋅4+3(-2y)-4y=12
x=4-2y
Step 2.2.1.1.2
Multiply 3 by 4.
12+3(-2y)-4y=12
x=4-2y
Step 2.2.1.1.3
Multiply -2 by 3.
12-6y-4y=12
x=4-2y
12-6y-4y=12
x=4-2y
Step 2.2.1.2
Subtract 4y from -6y.
12-10y=12
x=4-2y
12-10y=12
x=4-2y
12-10y=12
x=4-2y
12-10y=12
x=4-2y
Step 3
Step 3.1
Move all terms not containing y to the right side of the equation.
Step 3.1.1
Subtract 12 from both sides of the equation.
-10y=12-12
x=4-2y
Step 3.1.2
Subtract 12 from 12.
-10y=0
x=4-2y
-10y=0
x=4-2y
Step 3.2
Divide each term in -10y=0 by -10 and simplify.
Step 3.2.1
Divide each term in -10y=0 by -10.
-10y-10=0-10
x=4-2y
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of -10.
Step 3.2.2.1.1
Cancel the common factor.
-10y-10=0-10
x=4-2y
Step 3.2.2.1.2
Divide y by 1.
y=0-10
x=4-2y
y=0-10
x=4-2y
y=0-10
x=4-2y
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Divide 0 by -10.
y=0
x=4-2y
y=0
x=4-2y
y=0
x=4-2y
y=0
x=4-2y
Step 4
Step 4.1
Replace all occurrences of y in x=4-2y with 0.
x=4-2⋅0
y=0
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify 4-2⋅0.
Step 4.2.1.1
Multiply -2 by 0.
x=4+0
y=0
Step 4.2.1.2
Add 4 and 0.
x=4
y=0
x=4
y=0
x=4
y=0
x=4
y=0
Step 5
The solution to the system is the complete set of ordered pairs that are valid solutions.
(4,0)
Step 6
The result can be shown in multiple forms.
Point Form:
(4,0)
Equation Form:
x=4,y=0
Step 7