Enter a problem...
Finite Math Examples
,
Step 1
Step 1.1
Replace all occurrences of in with .
Step 1.2
Simplify the left side.
Step 1.2.1
Simplify .
Step 1.2.1.1
Simplify each term.
Step 1.2.1.1.1
Combine and .
Step 1.2.1.1.2
Apply the distributive property.
Step 1.2.1.1.3
Simplify.
Step 1.2.1.1.3.1
Multiply by .
Step 1.2.1.1.3.2
Multiply by .
Step 1.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 1.2.1.3
Combine and .
Step 1.2.1.4
Combine the numerators over the common denominator.
Step 1.2.1.5
Find the common denominator.
Step 1.2.1.5.1
Write as a fraction with denominator .
Step 1.2.1.5.2
Multiply by .
Step 1.2.1.5.3
Multiply by .
Step 1.2.1.5.4
Write as a fraction with denominator .
Step 1.2.1.5.5
Multiply by .
Step 1.2.1.5.6
Multiply by .
Step 1.2.1.6
Combine the numerators over the common denominator.
Step 1.2.1.7
Simplify each term.
Step 1.2.1.7.1
Multiply by .
Step 1.2.1.7.2
Multiply by .
Step 1.2.1.7.3
Multiply by .
Step 1.2.1.8
Simplify terms.
Step 1.2.1.8.1
Subtract from .
Step 1.2.1.8.2
Factor out of .
Step 1.2.1.8.3
Factor out of .
Step 1.2.1.8.4
Factor out of .
Step 1.2.1.8.5
Rewrite as .
Step 1.2.1.8.6
Factor out of .
Step 1.2.1.8.7
Simplify the expression.
Step 1.2.1.8.7.1
Rewrite as .
Step 1.2.1.8.7.2
Move the negative in front of the fraction.
Step 2
Step 2.1
Multiply both sides of the equation by .
Step 2.2
Simplify both sides of the equation.
Step 2.2.1
Simplify the left side.
Step 2.2.1.1
Simplify .
Step 2.2.1.1.1
Cancel the common factor of .
Step 2.2.1.1.1.1
Move the leading negative in into the numerator.
Step 2.2.1.1.1.2
Factor out of .
Step 2.2.1.1.1.3
Cancel the common factor.
Step 2.2.1.1.1.4
Rewrite the expression.
Step 2.2.1.1.2
Multiply.
Step 2.2.1.1.2.1
Multiply by .
Step 2.2.1.1.2.2
Multiply by .
Step 2.2.2
Simplify the right side.
Step 2.2.2.1
Multiply by .
Step 2.3
Move all terms to the left side of the equation and simplify.
Step 2.3.1
Add to both sides of the equation.
Step 2.3.2
Add and .
Step 2.4
Use the quadratic formula to find the solutions.
Step 2.5
Substitute the values , , and into the quadratic formula and solve for .
Step 2.6
Simplify.
Step 2.6.1
Simplify the numerator.
Step 2.6.1.1
Raise to the power of .
Step 2.6.1.2
Multiply .
Step 2.6.1.2.1
Multiply by .
Step 2.6.1.2.2
Multiply by .
Step 2.6.1.3
Subtract from .
Step 2.6.1.4
Rewrite as .
Step 2.6.1.5
Rewrite as .
Step 2.6.1.6
Rewrite as .
Step 2.6.2
Multiply by .
Step 2.7
Simplify the expression to solve for the portion of the .
Step 2.7.1
Simplify the numerator.
Step 2.7.1.1
Raise to the power of .
Step 2.7.1.2
Multiply .
Step 2.7.1.2.1
Multiply by .
Step 2.7.1.2.2
Multiply by .
Step 2.7.1.3
Subtract from .
Step 2.7.1.4
Rewrite as .
Step 2.7.1.5
Rewrite as .
Step 2.7.1.6
Rewrite as .
Step 2.7.2
Multiply by .
Step 2.7.3
Change the to .
Step 2.7.4
Rewrite as .
Step 2.7.5
Factor out of .
Step 2.7.6
Factor out of .
Step 2.7.7
Move the negative in front of the fraction.
Step 2.8
Simplify the expression to solve for the portion of the .
Step 2.8.1
Simplify the numerator.
Step 2.8.1.1
Raise to the power of .
Step 2.8.1.2
Multiply .
Step 2.8.1.2.1
Multiply by .
Step 2.8.1.2.2
Multiply by .
Step 2.8.1.3
Subtract from .
Step 2.8.1.4
Rewrite as .
Step 2.8.1.5
Rewrite as .
Step 2.8.1.6
Rewrite as .
Step 2.8.2
Multiply by .
Step 2.8.3
Change the to .
Step 2.8.4
Rewrite as .
Step 2.8.5
Factor out of .
Step 2.8.6
Factor out of .
Step 2.8.7
Move the negative in front of the fraction.
Step 2.9
The final answer is the combination of both solutions.
Step 3
Step 3.1
Replace all occurrences of in with .
Step 3.2
Simplify the right side.
Step 3.2.1
Simplify .
Step 3.2.1.1
Simplify each term.
Step 3.2.1.1.1
Use the power rule to distribute the exponent.
Step 3.2.1.1.1.1
Apply the product rule to .
Step 3.2.1.1.1.2
Apply the product rule to .
Step 3.2.1.1.2
Raise to the power of .
Step 3.2.1.1.3
Multiply by .
Step 3.2.1.1.4
Raise to the power of .
Step 3.2.1.1.5
Rewrite as .
Step 3.2.1.1.6
Expand using the FOIL Method.
Step 3.2.1.1.6.1
Apply the distributive property.
Step 3.2.1.1.6.2
Apply the distributive property.
Step 3.2.1.1.6.3
Apply the distributive property.
Step 3.2.1.1.7
Simplify and combine like terms.
Step 3.2.1.1.7.1
Simplify each term.
Step 3.2.1.1.7.1.1
Multiply by .
Step 3.2.1.1.7.1.2
Multiply by .
Step 3.2.1.1.7.1.3
Multiply by .
Step 3.2.1.1.7.1.4
Multiply .
Step 3.2.1.1.7.1.4.1
Multiply by .
Step 3.2.1.1.7.1.4.2
Multiply by .
Step 3.2.1.1.7.1.4.3
Raise to the power of .
Step 3.2.1.1.7.1.4.4
Raise to the power of .
Step 3.2.1.1.7.1.4.5
Use the power rule to combine exponents.
Step 3.2.1.1.7.1.4.6
Add and .
Step 3.2.1.1.7.1.4.7
Raise to the power of .
Step 3.2.1.1.7.1.4.8
Raise to the power of .
Step 3.2.1.1.7.1.4.9
Use the power rule to combine exponents.
Step 3.2.1.1.7.1.4.10
Add and .
Step 3.2.1.1.7.1.5
Rewrite as .
Step 3.2.1.1.7.1.5.1
Use to rewrite as .
Step 3.2.1.1.7.1.5.2
Apply the power rule and multiply exponents, .
Step 3.2.1.1.7.1.5.3
Combine and .
Step 3.2.1.1.7.1.5.4
Cancel the common factor of .
Step 3.2.1.1.7.1.5.4.1
Cancel the common factor.
Step 3.2.1.1.7.1.5.4.2
Rewrite the expression.
Step 3.2.1.1.7.1.5.5
Evaluate the exponent.
Step 3.2.1.1.7.1.6
Rewrite as .
Step 3.2.1.1.7.1.7
Multiply by .
Step 3.2.1.1.7.2
Subtract from .
Step 3.2.1.1.7.3
Subtract from .
Step 3.2.1.1.8
Reorder and .
Step 3.2.1.1.9
Cancel the common factor of and .
Step 3.2.1.1.9.1
Factor out of .
Step 3.2.1.1.9.2
Factor out of .
Step 3.2.1.1.9.3
Factor out of .
Step 3.2.1.1.9.4
Cancel the common factors.
Step 3.2.1.1.9.4.1
Factor out of .
Step 3.2.1.1.9.4.2
Cancel the common factor.
Step 3.2.1.1.9.4.3
Rewrite the expression.
Step 3.2.1.1.10
Cancel the common factor of .
Step 3.2.1.1.10.1
Move the leading negative in into the numerator.
Step 3.2.1.1.10.2
Factor out of .
Step 3.2.1.1.10.3
Cancel the common factor.
Step 3.2.1.1.10.4
Rewrite the expression.
Step 3.2.1.1.11
Move the negative in front of the fraction.
Step 3.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.2.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.2.1.3.1
Multiply by .
Step 3.2.1.3.2
Multiply by .
Step 3.2.1.4
Combine the numerators over the common denominator.
Step 3.2.1.5
To write as a fraction with a common denominator, multiply by .
Step 3.2.1.6
Combine and .
Step 3.2.1.7
Combine the numerators over the common denominator.
Step 3.2.1.8
Rewrite as .
Step 3.2.1.9
Factor out of .
Step 3.2.1.10
Factor out of .
Step 3.2.1.11
Move the negative in front of the fraction.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Use the power rule to distribute the exponent.
Step 4.2.1.1.1.1
Apply the product rule to .
Step 4.2.1.1.1.2
Apply the product rule to .
Step 4.2.1.1.2
Raise to the power of .
Step 4.2.1.1.3
Multiply by .
Step 4.2.1.1.4
Raise to the power of .
Step 4.2.1.1.5
Rewrite as .
Step 4.2.1.1.6
Expand using the FOIL Method.
Step 4.2.1.1.6.1
Apply the distributive property.
Step 4.2.1.1.6.2
Apply the distributive property.
Step 4.2.1.1.6.3
Apply the distributive property.
Step 4.2.1.1.7
Simplify and combine like terms.
Step 4.2.1.1.7.1
Simplify each term.
Step 4.2.1.1.7.1.1
Multiply by .
Step 4.2.1.1.7.1.2
Move to the left of .
Step 4.2.1.1.7.1.3
Multiply .
Step 4.2.1.1.7.1.3.1
Raise to the power of .
Step 4.2.1.1.7.1.3.2
Raise to the power of .
Step 4.2.1.1.7.1.3.3
Use the power rule to combine exponents.
Step 4.2.1.1.7.1.3.4
Add and .
Step 4.2.1.1.7.1.3.5
Raise to the power of .
Step 4.2.1.1.7.1.3.6
Raise to the power of .
Step 4.2.1.1.7.1.3.7
Use the power rule to combine exponents.
Step 4.2.1.1.7.1.3.8
Add and .
Step 4.2.1.1.7.1.4
Rewrite as .
Step 4.2.1.1.7.1.5
Rewrite as .
Step 4.2.1.1.7.1.5.1
Use to rewrite as .
Step 4.2.1.1.7.1.5.2
Apply the power rule and multiply exponents, .
Step 4.2.1.1.7.1.5.3
Combine and .
Step 4.2.1.1.7.1.5.4
Cancel the common factor of .
Step 4.2.1.1.7.1.5.4.1
Cancel the common factor.
Step 4.2.1.1.7.1.5.4.2
Rewrite the expression.
Step 4.2.1.1.7.1.5.5
Evaluate the exponent.
Step 4.2.1.1.7.1.6
Multiply by .
Step 4.2.1.1.7.2
Subtract from .
Step 4.2.1.1.7.3
Add and .
Step 4.2.1.1.8
Reorder and .
Step 4.2.1.1.9
Cancel the common factor of and .
Step 4.2.1.1.9.1
Factor out of .
Step 4.2.1.1.9.2
Factor out of .
Step 4.2.1.1.9.3
Factor out of .
Step 4.2.1.1.9.4
Cancel the common factors.
Step 4.2.1.1.9.4.1
Factor out of .
Step 4.2.1.1.9.4.2
Cancel the common factor.
Step 4.2.1.1.9.4.3
Rewrite the expression.
Step 4.2.1.1.10
Cancel the common factor of .
Step 4.2.1.1.10.1
Move the leading negative in into the numerator.
Step 4.2.1.1.10.2
Factor out of .
Step 4.2.1.1.10.3
Cancel the common factor.
Step 4.2.1.1.10.4
Rewrite the expression.
Step 4.2.1.1.11
Move the negative in front of the fraction.
Step 4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 4.2.1.3.1
Multiply by .
Step 4.2.1.3.2
Multiply by .
Step 4.2.1.4
Combine the numerators over the common denominator.
Step 4.2.1.5
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.6
Combine and .
Step 4.2.1.7
Combine the numerators over the common denominator.
Step 4.2.1.8
Rewrite as .
Step 4.2.1.9
Factor out of .
Step 4.2.1.10
Factor out of .
Step 4.2.1.11
Move the negative in front of the fraction.
Step 5
List all of the solutions.
Step 6