Enter a problem...
Finite Math Examples
x+xy=7x+xy=7 , x-2y=-5x−2y=−5
Step 1
Add 2y2y to both sides of the equation.
x=-5+2yx=−5+2y
x+xy=7x+xy=7
Step 2
Step 2.1
Replace all occurrences of xx in x+xy=7x+xy=7 with -5+2y−5+2y.
(-5+2y)+(-5+2y)⋅y=7(−5+2y)+(−5+2y)⋅y=7
x=-5+2yx=−5+2y
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify (-5+2y)+(-5+2y)⋅y(−5+2y)+(−5+2y)⋅y.
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
-5+2y-5y+2y⋅y=7−5+2y−5y+2y⋅y=7
x=-5+2yx=−5+2y
Step 2.2.1.1.2
Multiply yy by yy by adding the exponents.
Step 2.2.1.1.2.1
Move yy.
-5+2y-5y+2(y⋅y)=7−5+2y−5y+2(y⋅y)=7
x=-5+2yx=−5+2y
Step 2.2.1.1.2.2
Multiply yy by yy.
-5+2y-5y+2y2=7−5+2y−5y+2y2=7
x=-5+2yx=−5+2y
-5+2y-5y+2y2=7−5+2y−5y+2y2=7
x=-5+2yx=−5+2y
-5+2y-5y+2y2=7−5+2y−5y+2y2=7
x=-5+2yx=−5+2y
Step 2.2.1.2
Subtract 5y5y from 2y2y.
-5-3y+2y2=7−5−3y+2y2=7
x=-5+2yx=−5+2y
-5-3y+2y2=7−5−3y+2y2=7
x=-5+2yx=−5+2y
-5-3y+2y2=7−5−3y+2y2=7
x=-5+2yx=−5+2y
-5-3y+2y2=7−5−3y+2y2=7
x=-5+2yx=−5+2y
Step 3
Step 3.1
Move all terms to the left side of the equation and simplify.
Step 3.1.1
Subtract 77 from both sides of the equation.
-5-3y+2y2-7=0−5−3y+2y2−7=0
x=-5+2yx=−5+2y
Step 3.1.2
Subtract 77 from -5−5.
-3y+2y2-12=0−3y+2y2−12=0
x=-5+2yx=−5+2y
-3y+2y2-12=0−3y+2y2−12=0
x=-5+2yx=−5+2y
Step 3.2
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
x=-5+2yx=−5+2y
Step 3.3
Substitute the values a=2a=2, b=-3b=−3, and c=-12c=−12 into the quadratic formula and solve for yy.
3±√(-3)2-4⋅(2⋅-12)2⋅23±√(−3)2−4⋅(2⋅−12)2⋅2
x=-5+2yx=−5+2y
Step 3.4
Simplify.
Step 3.4.1
Simplify the numerator.
Step 3.4.1.1
Raise -3−3 to the power of 22.
y=3±√9-4⋅2⋅-122⋅2y=3±√9−4⋅2⋅−122⋅2
x=-5+2yx=−5+2y
Step 3.4.1.2
Multiply -4⋅2⋅-12−4⋅2⋅−12.
Step 3.4.1.2.1
Multiply -4−4 by 22.
y=3±√9-8⋅-122⋅2y=3±√9−8⋅−122⋅2
x=-5+2yx=−5+2y
Step 3.4.1.2.2
Multiply -8−8 by -12−12.
y=3±√9+962⋅2y=3±√9+962⋅2
x=-5+2yx=−5+2y
y=3±√9+962⋅2y=3±√9+962⋅2
x=-5+2yx=−5+2y
Step 3.4.1.3
Add 99 and 9696.
y=3±√1052⋅2y=3±√1052⋅2
x=-5+2yx=−5+2y
y=3±√1052⋅2y=3±√1052⋅2
x=-5+2yx=−5+2y
Step 3.4.2
Multiply 22 by 22.
y=3±√1054y=3±√1054
x=-5+2yx=−5+2y
y=3±√1054y=3±√1054
x=-5+2yx=−5+2y
Step 3.5
Simplify the expression to solve for the ++ portion of the ±±.
Step 3.5.1
Simplify the numerator.
Step 3.5.1.1
Raise -3−3 to the power of 22.
y=3±√9-4⋅2⋅-122⋅2y=3±√9−4⋅2⋅−122⋅2
x=-5+2yx=−5+2y
Step 3.5.1.2
Multiply -4⋅2⋅-12−4⋅2⋅−12.
Step 3.5.1.2.1
Multiply -4−4 by 22.
y=3±√9-8⋅-122⋅2y=3±√9−8⋅−122⋅2
x=-5+2yx=−5+2y
Step 3.5.1.2.2
Multiply -8−8 by -12−12.
y=3±√9+962⋅2y=3±√9+962⋅2
x=-5+2yx=−5+2y
y=3±√9+962⋅2
x=-5+2y
Step 3.5.1.3
Add 9 and 96.
y=3±√1052⋅2
x=-5+2y
y=3±√1052⋅2
x=-5+2y
Step 3.5.2
Multiply 2 by 2.
y=3±√1054
x=-5+2y
Step 3.5.3
Change the ± to +.
y=3+√1054
x=-5+2y
y=3+√1054
x=-5+2y
Step 3.6
Simplify the expression to solve for the - portion of the ±.
Step 3.6.1
Simplify the numerator.
Step 3.6.1.1
Raise -3 to the power of 2.
y=3±√9-4⋅2⋅-122⋅2
x=-5+2y
Step 3.6.1.2
Multiply -4⋅2⋅-12.
Step 3.6.1.2.1
Multiply -4 by 2.
y=3±√9-8⋅-122⋅2
x=-5+2y
Step 3.6.1.2.2
Multiply -8 by -12.
y=3±√9+962⋅2
x=-5+2y
y=3±√9+962⋅2
x=-5+2y
Step 3.6.1.3
Add 9 and 96.
y=3±√1052⋅2
x=-5+2y
y=3±√1052⋅2
x=-5+2y
Step 3.6.2
Multiply 2 by 2.
y=3±√1054
x=-5+2y
Step 3.6.3
Change the ± to -.
y=3-√1054
x=-5+2y
y=3-√1054
x=-5+2y
Step 3.7
The final answer is the combination of both solutions.
y=3+√1054,3-√1054
x=-5+2y
y=3+√1054,3-√1054
x=-5+2y
Step 4
Step 4.1
Replace all occurrences of y in x=-5+2y with 3+√1054.
x=-5+2(3+√1054)
y=3+√1054
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify -5+2(3+√1054).
Step 4.2.1.1
Cancel the common factor of 2.
Step 4.2.1.1.1
Factor 2 out of 4.
x=-5+2(3+√1052(2))
y=3+√1054
Step 4.2.1.1.2
Cancel the common factor.
x=-5+2(3+√1052⋅2)
y=3+√1054
Step 4.2.1.1.3
Rewrite the expression.
x=-5+3+√1052
y=3+√1054
x=-5+3+√1052
y=3+√1054
Step 4.2.1.2
To write -5 as a fraction with a common denominator, multiply by 22.
x=-5⋅22+3+√1052
y=3+√1054
Step 4.2.1.3
Combine fractions.
Step 4.2.1.3.1
Combine -5 and 22.
x=-5⋅22+3+√1052
y=3+√1054
Step 4.2.1.3.2
Combine the numerators over the common denominator.
x=-5⋅2+3+√1052
y=3+√1054
x=-5⋅2+3+√1052
y=3+√1054
Step 4.2.1.4
Simplify the numerator.
Step 4.2.1.4.1
Multiply -5 by 2.
x=-10+3+√1052
y=3+√1054
Step 4.2.1.4.2
Add -10 and 3.
x=-7+√1052
y=3+√1054
x=-7+√1052
y=3+√1054
Step 4.2.1.5
Simplify with factoring out.
Step 4.2.1.5.1
Rewrite -7 as -1(7).
x=-1⋅7+√1052
y=3+√1054
Step 4.2.1.5.2
Factor -1 out of √105.
x=-1⋅7-1(-√105)2
y=3+√1054
Step 4.2.1.5.3
Factor -1 out of -1(7)-1(-√105).
x=-1(7-√105)2
y=3+√1054
Step 4.2.1.5.4
Move the negative in front of the fraction.
x=-7-√1052
y=3+√1054
x=-7-√1052
y=3+√1054
x=-7-√1052
y=3+√1054
x=-7-√1052
y=3+√1054
x=-7-√1052
y=3+√1054
Step 5
Step 5.1
Replace all occurrences of y in x=-5+2y with 3-√1054.
x=-5+2(3-√1054)
y=3-√1054
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify -5+2(3-√1054).
Step 5.2.1.1
Cancel the common factor of 2.
Step 5.2.1.1.1
Factor 2 out of 4.
x=-5+2(3-√1052(2))
y=3-√1054
Step 5.2.1.1.2
Cancel the common factor.
x=-5+2(3-√1052⋅2)
y=3-√1054
Step 5.2.1.1.3
Rewrite the expression.
x=-5+3-√1052
y=3-√1054
x=-5+3-√1052
y=3-√1054
Step 5.2.1.2
To write -5 as a fraction with a common denominator, multiply by 22.
x=-5⋅22+3-√1052
y=3-√1054
Step 5.2.1.3
Combine fractions.
Step 5.2.1.3.1
Combine -5 and 22.
x=-5⋅22+3-√1052
y=3-√1054
Step 5.2.1.3.2
Combine the numerators over the common denominator.
x=-5⋅2+3-√1052
y=3-√1054
x=-5⋅2+3-√1052
y=3-√1054
Step 5.2.1.4
Simplify the numerator.
Step 5.2.1.4.1
Multiply -5 by 2.
x=-10+3-√1052
y=3-√1054
Step 5.2.1.4.2
Add -10 and 3.
x=-7-√1052
y=3-√1054
x=-7-√1052
y=3-√1054
Step 5.2.1.5
Simplify with factoring out.
Step 5.2.1.5.1
Rewrite -7 as -1(7).
x=-1⋅7-√1052
y=3-√1054
Step 5.2.1.5.2
Factor -1 out of -√105.
x=-1⋅7-(√105)2
y=3-√1054
Step 5.2.1.5.3
Factor -1 out of -1(7)-(√105).
x=-1(7+√105)2
y=3-√1054
Step 5.2.1.5.4
Move the negative in front of the fraction.
x=-7+√1052
y=3-√1054
x=-7+√1052
y=3-√1054
x=-7+√1052
y=3-√1054
x=-7+√1052
y=3-√1054
x=-7+√1052
y=3-√1054
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
(-7-√1052,3+√1054)
(-7+√1052,3-√1054)
Step 7
The result can be shown in multiple forms.
Point Form:
(-7-√1052,3+√1054),(-7+√1052,3-√1054)
Equation Form:
x=-7-√1052,y=3+√1054
x=-7+√1052,y=3-√1054
Step 8