Enter a problem...
Finite Math Examples
y=4x+3x-2y=4x+3x−2 , y=5xy=5x
Step 1
Step 1.1
Move all terms containing variables to the left side of the equation.
Step 1.1.1
Subtract 4x4x from both sides of the equation.
y-4x=3x-2y−4x=3x−2
y=5xy=5x
Step 1.1.2
Subtract 3x3x from both sides of the equation.
y-4x-3x=-2y−4x−3x=−2
y=5xy=5x
y-4x-3x=-2y−4x−3x=−2
y=5xy=5x
Step 1.2
Subtract 3x3x from -4x−4x.
y-7x=-2y−7x=−2
y=5xy=5x
Step 1.3
Reorder yy and -7x−7x.
-7x+y=-2−7x+y=−2
y=5xy=5x
Step 1.4
Subtract 5x5x from both sides of the equation.
-7x+y=-2−7x+y=−2
y-5x=0y−5x=0
Step 1.5
Reorder yy and -5x−5x.
-7x+y=-2−7x+y=−2
-5x+y=0−5x+y=0
-7x+y=-2−7x+y=−2
-5x+y=0−5x+y=0
Step 2
Represent the system of equations in matrix format.
[-71-51][xy]=[-20][−71−51][xy]=[−20]
Step 3
Step 3.1
Write [-71-51][−71−51] in determinant notation.
|-71-51|∣∣∣−71−51∣∣∣
Step 3.2
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
-7⋅1-(-5⋅1)−7⋅1−(−5⋅1)
Step 3.3
Simplify the determinant.
Step 3.3.1
Simplify each term.
Step 3.3.1.1
Multiply -7−7 by 11.
-7-(-5⋅1)−7−(−5⋅1)
Step 3.3.1.2
Multiply -(-5⋅1)−(−5⋅1).
Step 3.3.1.2.1
Multiply -5−5 by 11.
-7--5−7−−5
Step 3.3.1.2.2
Multiply -1−1 by -5−5.
-7+5−7+5
-7+5−7+5
-7+5−7+5
Step 3.3.2
Add -7−7 and 55.
-2−2
-2−2
D=-2D=−2
Step 4
Since the determinant is not 00, the system can be solved using Cramer's Rule.
Step 5
Step 5.1
Replace column 11 of the coefficient matrix that corresponds to the xx-coefficients of the system with [-20][−20].
|-2101|∣∣∣−2101∣∣∣
Step 5.2
Find the determinant.
Step 5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
-2⋅1+0⋅1−2⋅1+0⋅1
Step 5.2.2
Simplify the determinant.
Step 5.2.2.1
Simplify each term.
Step 5.2.2.1.1
Multiply -2−2 by 11.
-2+0⋅1−2+0⋅1
Step 5.2.2.1.2
Multiply 00 by 11.
-2+0−2+0
-2+0−2+0
Step 5.2.2.2
Add -2−2 and 00.
-2−2
-2−2
Dx=-2Dx=−2
Step 5.3
Use the formula to solve for xx.
x=DxDx=DxD
Step 5.4
Substitute -2−2 for DD and -2−2 for DxDx in the formula.
x=-2-2x=−2−2
Step 5.5
Divide -2−2 by -2−2.
x=1x=1
x=1x=1
Step 6
Step 6.1
Replace column 22 of the coefficient matrix that corresponds to the yy-coefficients of the system with [-20][−20].
|-7-2-50|∣∣∣−7−2−50∣∣∣
Step 6.2
Find the determinant.
Step 6.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
-7⋅0-(-5⋅-2)−7⋅0−(−5⋅−2)
Step 6.2.2
Simplify the determinant.
Step 6.2.2.1
Simplify each term.
Step 6.2.2.1.1
Multiply -7−7 by 00.
0-(-5⋅-2)0−(−5⋅−2)
Step 6.2.2.1.2
Multiply -(-5⋅-2)−(−5⋅−2).
Step 6.2.2.1.2.1
Multiply -5−5 by -2−2.
0-1⋅100−1⋅10
Step 6.2.2.1.2.2
Multiply -1−1 by 1010.
0-100−10
0-100−10
0-100−10
Step 6.2.2.2
Subtract 1010 from 00.
-10−10
-10−10
Dy=-10Dy=−10
Step 6.3
Use the formula to solve for yy.
y=DyDy=DyD
Step 6.4
Substitute -2−2 for DD and -10−10 for DyDy in the formula.
y=-10-2y=−10−2
Step 6.5
Divide -10−10 by -2−2.
y=5y=5
y=5y=5
Step 7
List the solution to the system of equations.
x=1x=1
y=5y=5