Finite Math Examples

Solve Using a Matrix with Cramer's Rule y=4x+3x-2 , y=5x
y=4x+3x-2y=4x+3x2 , y=5xy=5x
Step 1
Move all of the variables to the left side of each equation.
Tap for more steps...
Step 1.1
Move all terms containing variables to the left side of the equation.
Tap for more steps...
Step 1.1.1
Subtract 4x4x from both sides of the equation.
y-4x=3x-2y4x=3x2
y=5xy=5x
Step 1.1.2
Subtract 3x3x from both sides of the equation.
y-4x-3x=-2y4x3x=2
y=5xy=5x
y-4x-3x=-2y4x3x=2
y=5xy=5x
Step 1.2
Subtract 3x3x from -4x4x.
y-7x=-2y7x=2
y=5xy=5x
Step 1.3
Reorder yy and -7x7x.
-7x+y=-27x+y=2
y=5xy=5x
Step 1.4
Subtract 5x5x from both sides of the equation.
-7x+y=-27x+y=2
y-5x=0y5x=0
Step 1.5
Reorder yy and -5x5x.
-7x+y=-27x+y=2
-5x+y=05x+y=0
-7x+y=-27x+y=2
-5x+y=05x+y=0
Step 2
Represent the system of equations in matrix format.
[-71-51][xy]=[-20][7151][xy]=[20]
Step 3
Find the determinant of the coefficient matrix [-71-51][7151].
Tap for more steps...
Step 3.1
Write [-71-51][7151] in determinant notation.
|-71-51|7151
Step 3.2
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
-71-(-51)71(51)
Step 3.3
Simplify the determinant.
Tap for more steps...
Step 3.3.1
Simplify each term.
Tap for more steps...
Step 3.3.1.1
Multiply -77 by 11.
-7-(-51)7(51)
Step 3.3.1.2
Multiply -(-51)(51).
Tap for more steps...
Step 3.3.1.2.1
Multiply -55 by 11.
-7--575
Step 3.3.1.2.2
Multiply -11 by -55.
-7+57+5
-7+57+5
-7+57+5
Step 3.3.2
Add -77 and 55.
-22
-22
D=-2D=2
Step 4
Since the determinant is not 00, the system can be solved using Cramer's Rule.
Step 5
Find the value of xx by Cramer's Rule, which states that x=DxDx=DxD.
Tap for more steps...
Step 5.1
Replace column 11 of the coefficient matrix that corresponds to the xx-coefficients of the system with [-20][20].
|-2101|2101
Step 5.2
Find the determinant.
Tap for more steps...
Step 5.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
-21+0121+01
Step 5.2.2
Simplify the determinant.
Tap for more steps...
Step 5.2.2.1
Simplify each term.
Tap for more steps...
Step 5.2.2.1.1
Multiply -22 by 11.
-2+012+01
Step 5.2.2.1.2
Multiply 00 by 11.
-2+02+0
-2+02+0
Step 5.2.2.2
Add -22 and 00.
-22
-22
Dx=-2Dx=2
Step 5.3
Use the formula to solve for xx.
x=DxDx=DxD
Step 5.4
Substitute -22 for DD and -22 for DxDx in the formula.
x=-2-2x=22
Step 5.5
Divide -22 by -22.
x=1x=1
x=1x=1
Step 6
Find the value of yy by Cramer's Rule, which states that y=DyDy=DyD.
Tap for more steps...
Step 6.1
Replace column 22 of the coefficient matrix that corresponds to the yy-coefficients of the system with [-20][20].
|-7-2-50|7250
Step 6.2
Find the determinant.
Tap for more steps...
Step 6.2.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
-70-(-5-2)70(52)
Step 6.2.2
Simplify the determinant.
Tap for more steps...
Step 6.2.2.1
Simplify each term.
Tap for more steps...
Step 6.2.2.1.1
Multiply -77 by 00.
0-(-5-2)0(52)
Step 6.2.2.1.2
Multiply -(-5-2)(52).
Tap for more steps...
Step 6.2.2.1.2.1
Multiply -55 by -22.
0-1100110
Step 6.2.2.1.2.2
Multiply -11 by 1010.
0-10010
0-10010
0-10010
Step 6.2.2.2
Subtract 1010 from 00.
-1010
-1010
Dy=-10Dy=10
Step 6.3
Use the formula to solve for yy.
y=DyDy=DyD
Step 6.4
Substitute -22 for DD and -1010 for DyDy in the formula.
y=-10-2y=102
Step 6.5
Divide -1010 by -22.
y=5y=5
y=5y=5
Step 7
List the solution to the system of equations.
x=1x=1
y=5y=5
 [x2  12  π  xdx ]  x2  12  π  xdx