Enter a problem...
Finite Math Examples
x-3y+4z=25 , y-z+w=-12 , -2x+3y-3z+3w=-18 , 3y-4z+w=-29
Step 1
Step 1.1
Move -z.
x-3y+4z=25
y+w-z=-12
-2x+3y-3z+3w=-18
3y-4z+w=-29
Step 1.2
Reorder y and w.
x-3y+4z=25
w+y-z=-12
-2x+3y-3z+3w=-18
3y-4z+w=-29
Step 1.3
Move -3z.
x-3y+4z=25
w+y-z=-12
-2x+3y+3w-3z=-18
3y-4z+w=-29
Step 1.4
Move 3y.
x-3y+4z=25
w+y-z=-12
-2x+3w+3y-3z=-18
3y-4z+w=-29
Step 1.5
Reorder -2x and 3w.
x-3y+4z=25
w+y-z=-12
3w-2x+3y-3z=-18
3y-4z+w=-29
Step 1.6
Move -4z.
x-3y+4z=25
w+y-z=-12
3w-2x+3y-3z=-18
3y+w-4z=-29
Step 1.7
Reorder 3y and w.
x-3y+4z=25
w+y-z=-12
3w-2x+3y-3z=-18
w+3y-4z=-29
x-3y+4z=25
w+y-z=-12
3w-2x+3y-3z=-18
w+3y-4z=-29
Step 2
Represent the system of equations in matrix format.
[01-34101-13-23-3103-4][wxyz]=[25-12-18-29]
Step 3
Step 3.1
Write [01-34101-13-23-3103-4] in determinant notation.
|01-34101-13-23-3103-4|
Step 3.2
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Step 3.2.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Step 3.2.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 3.2.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|11-133-313-4|
Step 3.2.4
Multiply element a12 by its cofactor.
-1|11-133-313-4|
Step 3.2.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|0-3433-313-4|
Step 3.2.6
Multiply element a22 by its cofactor.
0|0-3433-313-4|
Step 3.2.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|0-3411-113-4|
Step 3.2.8
Multiply element a32 by its cofactor.
2|0-3411-113-4|
Step 3.2.9
The minor for a42 is the determinant with row 4 and column 2 deleted.
|0-3411-133-3|
Step 3.2.10
Multiply element a42 by its cofactor.
0|0-3411-133-3|
Step 3.2.11
Add the terms together.
-1|11-133-313-4|+0|0-3433-313-4|+2|0-3411-113-4|+0|0-3411-133-3|
-1|11-133-313-4|+0|0-3433-313-4|+2|0-3411-113-4|+0|0-3411-133-3|
Step 3.3
Multiply 0 by |0-3433-313-4|.
-1|11-133-313-4|+0+2|0-3411-113-4|+0|0-3411-133-3|
Step 3.4
Multiply 0 by |0-3411-133-3|.
-1|11-133-313-4|+0+2|0-3411-113-4|+0
Step 3.5
Evaluate |11-133-313-4|.
Step 3.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 3.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 3.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 3.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|3-33-4|
Step 3.5.1.4
Multiply element a11 by its cofactor.
1|3-33-4|
Step 3.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|3-31-4|
Step 3.5.1.6
Multiply element a12 by its cofactor.
-1|3-31-4|
Step 3.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|3313|
Step 3.5.1.8
Multiply element a13 by its cofactor.
-1|3313|
Step 3.5.1.9
Add the terms together.
-1(1|3-33-4|-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
-1(1|3-33-4|-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
Step 3.5.2
Evaluate |3-33-4|.
Step 3.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1(1(3⋅-4-3⋅-3)-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
Step 3.5.2.2
Simplify the determinant.
Step 3.5.2.2.1
Simplify each term.
Step 3.5.2.2.1.1
Multiply 3 by -4.
-1(1(-12-3⋅-3)-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
Step 3.5.2.2.1.2
Multiply -3 by -3.
-1(1(-12+9)-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
-1(1(-12+9)-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
Step 3.5.2.2.2
Add -12 and 9.
-1(1⋅-3-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
-1(1⋅-3-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
-1(1⋅-3-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
Step 3.5.3
Evaluate |3-31-4|.
Step 3.5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1(1⋅-3-1(3⋅-4-1⋅-3)-1|3313|)+0+2|0-3411-113-4|+0
Step 3.5.3.2
Simplify the determinant.
Step 3.5.3.2.1
Simplify each term.
Step 3.5.3.2.1.1
Multiply 3 by -4.
-1(1⋅-3-1(-12-1⋅-3)-1|3313|)+0+2|0-3411-113-4|+0
Step 3.5.3.2.1.2
Multiply -1 by -3.
-1(1⋅-3-1(-12+3)-1|3313|)+0+2|0-3411-113-4|+0
-1(1⋅-3-1(-12+3)-1|3313|)+0+2|0-3411-113-4|+0
Step 3.5.3.2.2
Add -12 and 3.
-1(1⋅-3-1⋅-9-1|3313|)+0+2|0-3411-113-4|+0
-1(1⋅-3-1⋅-9-1|3313|)+0+2|0-3411-113-4|+0
-1(1⋅-3-1⋅-9-1|3313|)+0+2|0-3411-113-4|+0
Step 3.5.4
Evaluate |3313|.
Step 3.5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1(1⋅-3-1⋅-9-1(3⋅3-1⋅3))+0+2|0-3411-113-4|+0
Step 3.5.4.2
Simplify the determinant.
Step 3.5.4.2.1
Simplify each term.
Step 3.5.4.2.1.1
Multiply 3 by 3.
-1(1⋅-3-1⋅-9-1(9-1⋅3))+0+2|0-3411-113-4|+0
Step 3.5.4.2.1.2
Multiply -1 by 3.
-1(1⋅-3-1⋅-9-1(9-3))+0+2|0-3411-113-4|+0
-1(1⋅-3-1⋅-9-1(9-3))+0+2|0-3411-113-4|+0
Step 3.5.4.2.2
Subtract 3 from 9.
-1(1⋅-3-1⋅-9-1⋅6)+0+2|0-3411-113-4|+0
-1(1⋅-3-1⋅-9-1⋅6)+0+2|0-3411-113-4|+0
-1(1⋅-3-1⋅-9-1⋅6)+0+2|0-3411-113-4|+0
Step 3.5.5
Simplify the determinant.
Step 3.5.5.1
Simplify each term.
Step 3.5.5.1.1
Multiply -3 by 1.
-1(-3-1⋅-9-1⋅6)+0+2|0-3411-113-4|+0
Step 3.5.5.1.2
Multiply -1 by -9.
-1(-3+9-1⋅6)+0+2|0-3411-113-4|+0
Step 3.5.5.1.3
Multiply -1 by 6.
-1(-3+9-6)+0+2|0-3411-113-4|+0
-1(-3+9-6)+0+2|0-3411-113-4|+0
Step 3.5.5.2
Add -3 and 9.
-1(6-6)+0+2|0-3411-113-4|+0
Step 3.5.5.3
Subtract 6 from 6.
-1⋅0+0+2|0-3411-113-4|+0
-1⋅0+0+2|0-3411-113-4|+0
-1⋅0+0+2|0-3411-113-4|+0
Step 3.6
Evaluate |0-3411-113-4|.
Step 3.6.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 3.6.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 3.6.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 3.6.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|1-13-4|
Step 3.6.1.4
Multiply element a11 by its cofactor.
0|1-13-4|
Step 3.6.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1-11-4|
Step 3.6.1.6
Multiply element a12 by its cofactor.
3|1-11-4|
Step 3.6.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1113|
Step 3.6.1.8
Multiply element a13 by its cofactor.
4|1113|
Step 3.6.1.9
Add the terms together.
-1⋅0+0+2(0|1-13-4|+3|1-11-4|+4|1113|)+0
-1⋅0+0+2(0|1-13-4|+3|1-11-4|+4|1113|)+0
Step 3.6.2
Multiply 0 by |1-13-4|.
-1⋅0+0+2(0+3|1-11-4|+4|1113|)+0
Step 3.6.3
Evaluate |1-11-4|.
Step 3.6.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1⋅0+0+2(0+3(1⋅-4-1⋅-1)+4|1113|)+0
Step 3.6.3.2
Simplify the determinant.
Step 3.6.3.2.1
Simplify each term.
Step 3.6.3.2.1.1
Multiply -4 by 1.
-1⋅0+0+2(0+3(-4-1⋅-1)+4|1113|)+0
Step 3.6.3.2.1.2
Multiply -1 by -1.
-1⋅0+0+2(0+3(-4+1)+4|1113|)+0
-1⋅0+0+2(0+3(-4+1)+4|1113|)+0
Step 3.6.3.2.2
Add -4 and 1.
-1⋅0+0+2(0+3⋅-3+4|1113|)+0
-1⋅0+0+2(0+3⋅-3+4|1113|)+0
-1⋅0+0+2(0+3⋅-3+4|1113|)+0
Step 3.6.4
Evaluate |1113|.
Step 3.6.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1⋅0+0+2(0+3⋅-3+4(1⋅3-1⋅1))+0
Step 3.6.4.2
Simplify the determinant.
Step 3.6.4.2.1
Simplify each term.
Step 3.6.4.2.1.1
Multiply 3 by 1.
-1⋅0+0+2(0+3⋅-3+4(3-1⋅1))+0
Step 3.6.4.2.1.2
Multiply -1 by 1.
-1⋅0+0+2(0+3⋅-3+4(3-1))+0
-1⋅0+0+2(0+3⋅-3+4(3-1))+0
Step 3.6.4.2.2
Subtract 1 from 3.
-1⋅0+0+2(0+3⋅-3+4⋅2)+0
-1⋅0+0+2(0+3⋅-3+4⋅2)+0
-1⋅0+0+2(0+3⋅-3+4⋅2)+0
Step 3.6.5
Simplify the determinant.
Step 3.6.5.1
Simplify each term.
Step 3.6.5.1.1
Multiply 3 by -3.
-1⋅0+0+2(0-9+4⋅2)+0
Step 3.6.5.1.2
Multiply 4 by 2.
-1⋅0+0+2(0-9+8)+0
-1⋅0+0+2(0-9+8)+0
Step 3.6.5.2
Subtract 9 from 0.
-1⋅0+0+2(-9+8)+0
Step 3.6.5.3
Add -9 and 8.
-1⋅0+0+2⋅-1+0
-1⋅0+0+2⋅-1+0
-1⋅0+0+2⋅-1+0
Step 3.7
Simplify the determinant.
Step 3.7.1
Simplify each term.
Step 3.7.1.1
Multiply -1 by 0.
0+0+2⋅-1+0
Step 3.7.1.2
Multiply 2 by -1.
0+0-2+0
0+0-2+0
Step 3.7.2
Add 0 and 0.
0-2+0
Step 3.7.3
Subtract 2 from 0.
-2+0
Step 3.7.4
Add -2 and 0.
-2
-2
D=-2
Step 4
Since the determinant is not 0, the system can be solved using Cramer's Rule.
Step 5
Step 5.1
Replace column 1 of the coefficient matrix that corresponds to the w-coefficients of the system with [25-12-18-29].
|251-34-1201-1-18-23-3-2903-4|
Step 5.2
Find the determinant.
Step 5.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Step 5.2.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Step 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.2.1.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-121-1-183-3-293-4|
Step 5.2.1.4
Multiply element a12 by its cofactor.
-1|-121-1-183-3-293-4|
Step 5.2.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|25-34-183-3-293-4|
Step 5.2.1.6
Multiply element a22 by its cofactor.
0|25-34-183-3-293-4|
Step 5.2.1.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|25-34-121-1-293-4|
Step 5.2.1.8
Multiply element a32 by its cofactor.
2|25-34-121-1-293-4|
Step 5.2.1.9
The minor for a42 is the determinant with row 4 and column 2 deleted.
|25-34-121-1-183-3|
Step 5.2.1.10
Multiply element a42 by its cofactor.
0|25-34-121-1-183-3|
Step 5.2.1.11
Add the terms together.
-1|-121-1-183-3-293-4|+0|25-34-183-3-293-4|+2|25-34-121-1-293-4|+0|25-34-121-1-183-3|
-1|-121-1-183-3-293-4|+0|25-34-183-3-293-4|+2|25-34-121-1-293-4|+0|25-34-121-1-183-3|
Step 5.2.2
Multiply 0 by |25-34-183-3-293-4|.
-1|-121-1-183-3-293-4|+0+2|25-34-121-1-293-4|+0|25-34-121-1-183-3|
Step 5.2.3
Multiply 0 by |25-34-121-1-183-3|.
-1|-121-1-183-3-293-4|+0+2|25-34-121-1-293-4|+0
Step 5.2.4
Evaluate |-121-1-183-3-293-4|.
Step 5.2.4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 5.2.4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.2.4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.2.4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|3-33-4|
Step 5.2.4.1.4
Multiply element a11 by its cofactor.
-12|3-33-4|
Step 5.2.4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-18-3-29-4|
Step 5.2.4.1.6
Multiply element a12 by its cofactor.
-1|-18-3-29-4|
Step 5.2.4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-183-293|
Step 5.2.4.1.8
Multiply element a13 by its cofactor.
-1|-183-293|
Step 5.2.4.1.9
Add the terms together.
-1(-12|3-33-4|-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12|3-33-4|-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.2
Evaluate |3-33-4|.
Step 5.2.4.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1(-12(3⋅-4-3⋅-3)-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.2.2
Simplify the determinant.
Step 5.2.4.2.2.1
Simplify each term.
Step 5.2.4.2.2.1.1
Multiply 3 by -4.
-1(-12(-12-3⋅-3)-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.2.2.1.2
Multiply -3 by -3.
-1(-12(-12+9)-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12(-12+9)-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.2.2.2
Add -12 and 9.
-1(-12⋅-3-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.3
Evaluate |-18-3-29-4|.
Step 5.2.4.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1(-12⋅-3-1(-18⋅-4-(-29⋅-3))-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.3.2
Simplify the determinant.
Step 5.2.4.3.2.1
Simplify each term.
Step 5.2.4.3.2.1.1
Multiply -18 by -4.
-1(-12⋅-3-1(72-(-29⋅-3))-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.3.2.1.2
Multiply -(-29⋅-3).
Step 5.2.4.3.2.1.2.1
Multiply -29 by -3.
-1(-12⋅-3-1(72-1⋅87)-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.3.2.1.2.2
Multiply -1 by 87.
-1(-12⋅-3-1(72-87)-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1(72-87)-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1(72-87)-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.3.2.2
Subtract 87 from 72.
-1(-12⋅-3-1⋅-15-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1⋅-15-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1⋅-15-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.4
Evaluate |-183-293|.
Step 5.2.4.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1(-12⋅-3-1⋅-15-1(-18⋅3-(-29⋅3)))+0+2|25-34-121-1-293-4|+0
Step 5.2.4.4.2
Simplify the determinant.
Step 5.2.4.4.2.1
Simplify each term.
Step 5.2.4.4.2.1.1
Multiply -18 by 3.
-1(-12⋅-3-1⋅-15-1(-54-(-29⋅3)))+0+2|25-34-121-1-293-4|+0
Step 5.2.4.4.2.1.2
Multiply -(-29⋅3).
Step 5.2.4.4.2.1.2.1
Multiply -29 by 3.
-1(-12⋅-3-1⋅-15-1(-54--87))+0+2|25-34-121-1-293-4|+0
Step 5.2.4.4.2.1.2.2
Multiply -1 by -87.
-1(-12⋅-3-1⋅-15-1(-54+87))+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1⋅-15-1(-54+87))+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1⋅-15-1(-54+87))+0+2|25-34-121-1-293-4|+0
Step 5.2.4.4.2.2
Add -54 and 87.
-1(-12⋅-3-1⋅-15-1⋅33)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1⋅-15-1⋅33)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1⋅-15-1⋅33)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.5
Simplify the determinant.
Step 5.2.4.5.1
Simplify each term.
Step 5.2.4.5.1.1
Multiply -12 by -3.
-1(36-1⋅-15-1⋅33)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.5.1.2
Multiply -1 by -15.
-1(36+15-1⋅33)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.5.1.3
Multiply -1 by 33.
-1(36+15-33)+0+2|25-34-121-1-293-4|+0
-1(36+15-33)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.5.2
Add 36 and 15.
-1(51-33)+0+2|25-34-121-1-293-4|+0
Step 5.2.4.5.3
Subtract 33 from 51.
-1⋅18+0+2|25-34-121-1-293-4|+0
-1⋅18+0+2|25-34-121-1-293-4|+0
-1⋅18+0+2|25-34-121-1-293-4|+0
Step 5.2.5
Evaluate |25-34-121-1-293-4|.
Step 5.2.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 5.2.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 5.2.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 5.2.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|1-13-4|
Step 5.2.5.1.4
Multiply element a11 by its cofactor.
25|1-13-4|
Step 5.2.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-12-1-29-4|
Step 5.2.5.1.6
Multiply element a12 by its cofactor.
3|-12-1-29-4|
Step 5.2.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-121-293|
Step 5.2.5.1.8
Multiply element a13 by its cofactor.
4|-121-293|
Step 5.2.5.1.9
Add the terms together.
-1⋅18+0+2(25|1-13-4|+3|-12-1-29-4|+4|-121-293|)+0
-1⋅18+0+2(25|1-13-4|+3|-12-1-29-4|+4|-121-293|)+0
Step 5.2.5.2
Evaluate |1-13-4|.
Step 5.2.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1⋅18+0+2(25(1⋅-4-3⋅-1)+3|-12-1-29-4|+4|-121-293|)+0
Step 5.2.5.2.2
Simplify the determinant.
Step 5.2.5.2.2.1
Simplify each term.
Step 5.2.5.2.2.1.1
Multiply -4 by 1.
-1⋅18+0+2(25(-4-3⋅-1)+3|-12-1-29-4|+4|-121-293|)+0
Step 5.2.5.2.2.1.2
Multiply -3 by -1.
-1⋅18+0+2(25(-4+3)+3|-12-1-29-4|+4|-121-293|)+0
-1⋅18+0+2(25(-4+3)+3|-12-1-29-4|+4|-121-293|)+0
Step 5.2.5.2.2.2
Add -4 and 3.
-1⋅18+0+2(25⋅-1+3|-12-1-29-4|+4|-121-293|)+0
-1⋅18+0+2(25⋅-1+3|-12-1-29-4|+4|-121-293|)+0
-1⋅18+0+2(25⋅-1+3|-12-1-29-4|+4|-121-293|)+0
Step 5.2.5.3
Evaluate |-12-1-29-4|.
Step 5.2.5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1⋅18+0+2(25⋅-1+3(-12⋅-4-(-29⋅-1))+4|-121-293|)+0
Step 5.2.5.3.2
Simplify the determinant.
Step 5.2.5.3.2.1
Simplify each term.
Step 5.2.5.3.2.1.1
Multiply -12 by -4.
-1⋅18+0+2(25⋅-1+3(48-(-29⋅-1))+4|-121-293|)+0
Step 5.2.5.3.2.1.2
Multiply -(-29⋅-1).
Step 5.2.5.3.2.1.2.1
Multiply -29 by -1.
-1⋅18+0+2(25⋅-1+3(48-1⋅29)+4|-121-293|)+0
Step 5.2.5.3.2.1.2.2
Multiply -1 by 29.
-1⋅18+0+2(25⋅-1+3(48-29)+4|-121-293|)+0
-1⋅18+0+2(25⋅-1+3(48-29)+4|-121-293|)+0
-1⋅18+0+2(25⋅-1+3(48-29)+4|-121-293|)+0
Step 5.2.5.3.2.2
Subtract 29 from 48.
-1⋅18+0+2(25⋅-1+3⋅19+4|-121-293|)+0
-1⋅18+0+2(25⋅-1+3⋅19+4|-121-293|)+0
-1⋅18+0+2(25⋅-1+3⋅19+4|-121-293|)+0
Step 5.2.5.4
Evaluate |-121-293|.
Step 5.2.5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1⋅18+0+2(25⋅-1+3⋅19+4(-12⋅3-(-29⋅1)))+0
Step 5.2.5.4.2
Simplify the determinant.
Step 5.2.5.4.2.1
Simplify each term.
Step 5.2.5.4.2.1.1
Multiply -12 by 3.
-1⋅18+0+2(25⋅-1+3⋅19+4(-36-(-29⋅1)))+0
Step 5.2.5.4.2.1.2
Multiply -(-29⋅1).
Step 5.2.5.4.2.1.2.1
Multiply -29 by 1.
-1⋅18+0+2(25⋅-1+3⋅19+4(-36--29))+0
Step 5.2.5.4.2.1.2.2
Multiply -1 by -29.
-1⋅18+0+2(25⋅-1+3⋅19+4(-36+29))+0
-1⋅18+0+2(25⋅-1+3⋅19+4(-36+29))+0
-1⋅18+0+2(25⋅-1+3⋅19+4(-36+29))+0
Step 5.2.5.4.2.2
Add -36 and 29.
-1⋅18+0+2(25⋅-1+3⋅19+4⋅-7)+0
-1⋅18+0+2(25⋅-1+3⋅19+4⋅-7)+0
-1⋅18+0+2(25⋅-1+3⋅19+4⋅-7)+0
Step 5.2.5.5
Simplify the determinant.
Step 5.2.5.5.1
Simplify each term.
Step 5.2.5.5.1.1
Multiply 25 by -1.
-1⋅18+0+2(-25+3⋅19+4⋅-7)+0
Step 5.2.5.5.1.2
Multiply 3 by 19.
-1⋅18+0+2(-25+57+4⋅-7)+0
Step 5.2.5.5.1.3
Multiply 4 by -7.
-1⋅18+0+2(-25+57-28)+0
-1⋅18+0+2(-25+57-28)+0
Step 5.2.5.5.2
Add -25 and 57.
-1⋅18+0+2(32-28)+0
Step 5.2.5.5.3
Subtract 28 from 32.
-1⋅18+0+2⋅4+0
-1⋅18+0+2⋅4+0
-1⋅18+0+2⋅4+0
Step 5.2.6
Simplify the determinant.
Step 5.2.6.1
Simplify each term.
Step 5.2.6.1.1
Multiply -1 by 18.
-18+0+2⋅4+0
Step 5.2.6.1.2
Multiply 2 by 4.
-18+0+8+0
-18+0+8+0
Step 5.2.6.2
Add -18 and 0.
-18+8+0
Step 5.2.6.3
Add -18 and 8.
-10+0
Step 5.2.6.4
Add -10 and 0.
-10
-10
Dw=-10
Step 5.3
Use the formula to solve for w.
w=DwD
Step 5.4
Substitute -2 for D and -10 for Dw in the formula.
w=-10-2
Step 5.5
Divide -10 by -2.
w=5
w=5
Step 6
Step 6.1
Replace column 2 of the coefficient matrix that corresponds to the x-coefficients of the system with [25-12-18-29].
|025-341-121-13-183-31-293-4|
Step 6.2
Find the determinant.
Step 6.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 6.2.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Step 6.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 6.2.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-121-1-183-3-293-4|
Step 6.2.1.4
Multiply element a11 by its cofactor.
0|-121-1-183-3-293-4|
Step 6.2.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|11-133-313-4|
Step 6.2.1.6
Multiply element a12 by its cofactor.
-25|11-133-313-4|
Step 6.2.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1-12-13-18-31-29-4|
Step 6.2.1.8
Multiply element a13 by its cofactor.
-3|1-12-13-18-31-29-4|
Step 6.2.1.9
The minor for a14 is the determinant with row 1 and column 4 deleted.
|1-1213-1831-293|
Step 6.2.1.10
Multiply element a14 by its cofactor.
-4|1-1213-1831-293|
Step 6.2.1.11
Add the terms together.
0|-121-1-183-3-293-4|-25|11-133-313-4|-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0|-121-1-183-3-293-4|-25|11-133-313-4|-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.2
Multiply 0 by |-121-1-183-3-293-4|.
0-25|11-133-313-4|-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3
Evaluate |11-133-313-4|.
Step 6.2.3.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 6.2.3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 6.2.3.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 6.2.3.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|3-33-4|
Step 6.2.3.1.4
Multiply element a11 by its cofactor.
1|3-33-4|
Step 6.2.3.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|3-31-4|
Step 6.2.3.1.6
Multiply element a12 by its cofactor.
-1|3-31-4|
Step 6.2.3.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|3313|
Step 6.2.3.1.8
Multiply element a13 by its cofactor.
-1|3313|
Step 6.2.3.1.9
Add the terms together.
0-25(1|3-33-4|-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1|3-33-4|-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.2
Evaluate |3-33-4|.
Step 6.2.3.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-25(1(3⋅-4-3⋅-3)-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.2.2
Simplify the determinant.
Step 6.2.3.2.2.1
Simplify each term.
Step 6.2.3.2.2.1.1
Multiply 3 by -4.
0-25(1(-12-3⋅-3)-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.2.2.1.2
Multiply -3 by -3.
0-25(1(-12+9)-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1(-12+9)-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.2.2.2
Add -12 and 9.
0-25(1⋅-3-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.3
Evaluate |3-31-4|.
Step 6.2.3.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-25(1⋅-3-1(3⋅-4-1⋅-3)-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.3.2
Simplify the determinant.
Step 6.2.3.3.2.1
Simplify each term.
Step 6.2.3.3.2.1.1
Multiply 3 by -4.
0-25(1⋅-3-1(-12-1⋅-3)-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.3.2.1.2
Multiply -1 by -3.
0-25(1⋅-3-1(-12+3)-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1(-12+3)-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.3.2.2
Add -12 and 3.
0-25(1⋅-3-1⋅-9-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1⋅-9-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1⋅-9-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.4
Evaluate |3313|.
Step 6.2.3.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-25(1⋅-3-1⋅-9-1(3⋅3-1⋅3))-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.4.2
Simplify the determinant.
Step 6.2.3.4.2.1
Simplify each term.
Step 6.2.3.4.2.1.1
Multiply 3 by 3.
0-25(1⋅-3-1⋅-9-1(9-1⋅3))-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.4.2.1.2
Multiply -1 by 3.
0-25(1⋅-3-1⋅-9-1(9-3))-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1⋅-9-1(9-3))-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.4.2.2
Subtract 3 from 9.
0-25(1⋅-3-1⋅-9-1⋅6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1⋅-9-1⋅6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1⋅-9-1⋅6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.5
Simplify the determinant.
Step 6.2.3.5.1
Simplify each term.
Step 6.2.3.5.1.1
Multiply -3 by 1.
0-25(-3-1⋅-9-1⋅6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.5.1.2
Multiply -1 by -9.
0-25(-3+9-1⋅6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.5.1.3
Multiply -1 by 6.
0-25(-3+9-6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(-3+9-6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.5.2
Add -3 and 9.
0-25(6-6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.3.5.3
Subtract 6 from 6.
0-25⋅0-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25⋅0-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25⋅0-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Step 6.2.4
Evaluate |1-12-13-18-31-29-4|.
Step 6.2.4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 6.2.4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 6.2.4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 6.2.4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-18-3-29-4|
Step 6.2.4.1.4
Multiply element a11 by its cofactor.
1|-18-3-29-4|
Step 6.2.4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|3-31-4|
Step 6.2.4.1.6
Multiply element a12 by its cofactor.
12|3-31-4|
Step 6.2.4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|3-181-29|
Step 6.2.4.1.8
Multiply element a13 by its cofactor.
-1|3-181-29|
Step 6.2.4.1.9
Add the terms together.
0-25⋅0-3(1|-18-3-29-4|+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1|-18-3-29-4|+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
Step 6.2.4.2
Evaluate |-18-3-29-4|.
Step 6.2.4.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-25⋅0-3(1(-18⋅-4-(-29⋅-3))+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
Step 6.2.4.2.2
Simplify the determinant.
Step 6.2.4.2.2.1
Simplify each term.
Step 6.2.4.2.2.1.1
Multiply -18 by -4.
0-25⋅0-3(1(72-(-29⋅-3))+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
Step 6.2.4.2.2.1.2
Multiply -(-29⋅-3).
Step 6.2.4.2.2.1.2.1
Multiply -29 by -3.
0-25⋅0-3(1(72-1⋅87)+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
Step 6.2.4.2.2.1.2.2
Multiply -1 by 87.
0-25⋅0-3(1(72-87)+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1(72-87)+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1(72-87)+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
Step 6.2.4.2.2.2
Subtract 87 from 72.
0-25⋅0-3(1⋅-15+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
Step 6.2.4.3
Evaluate |3-31-4|.
Step 6.2.4.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-25⋅0-3(1⋅-15+12(3⋅-4-1⋅-3)-1|3-181-29|)-4|1-1213-1831-293|
Step 6.2.4.3.2
Simplify the determinant.
Step 6.2.4.3.2.1
Simplify each term.
Step 6.2.4.3.2.1.1
Multiply 3 by -4.
0-25⋅0-3(1⋅-15+12(-12-1⋅-3)-1|3-181-29|)-4|1-1213-1831-293|
Step 6.2.4.3.2.1.2
Multiply -1 by -3.
0-25⋅0-3(1⋅-15+12(-12+3)-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12(-12+3)-1|3-181-29|)-4|1-1213-1831-293|
Step 6.2.4.3.2.2
Add -12 and 3.
0-25⋅0-3(1⋅-15+12⋅-9-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12⋅-9-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12⋅-9-1|3-181-29|)-4|1-1213-1831-293|
Step 6.2.4.4
Evaluate |3-181-29|.
Step 6.2.4.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-25⋅0-3(1⋅-15+12⋅-9-1(3⋅-29-1⋅-18))-4|1-1213-1831-293|
Step 6.2.4.4.2
Simplify the determinant.
Step 6.2.4.4.2.1
Simplify each term.
Step 6.2.4.4.2.1.1
Multiply 3 by -29.
0-25⋅0-3(1⋅-15+12⋅-9-1(-87-1⋅-18))-4|1-1213-1831-293|
Step 6.2.4.4.2.1.2
Multiply -1 by -18.
0-25⋅0-3(1⋅-15+12⋅-9-1(-87+18))-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12⋅-9-1(-87+18))-4|1-1213-1831-293|
Step 6.2.4.4.2.2
Add -87 and 18.
0-25⋅0-3(1⋅-15+12⋅-9-1⋅-69)-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12⋅-9-1⋅-69)-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12⋅-9-1⋅-69)-4|1-1213-1831-293|
Step 6.2.4.5
Simplify the determinant.
Step 6.2.4.5.1
Simplify each term.
Step 6.2.4.5.1.1
Multiply -15 by 1.
0-25⋅0-3(-15+12⋅-9-1⋅-69)-4|1-1213-1831-293|
Step 6.2.4.5.1.2
Multiply 12 by -9.
0-25⋅0-3(-15-108-1⋅-69)-4|1-1213-1831-293|
Step 6.2.4.5.1.3
Multiply -1 by -69.
0-25⋅0-3(-15-108+69)-4|1-1213-1831-293|
0-25⋅0-3(-15-108+69)-4|1-1213-1831-293|
Step 6.2.4.5.2
Subtract 108 from -15.
0-25⋅0-3(-123+69)-4|1-1213-1831-293|
Step 6.2.4.5.3
Add -123 and 69.
0-25⋅0-3⋅-54-4|1-1213-1831-293|
0-25⋅0-3⋅-54-4|1-1213-1831-293|
0-25⋅0-3⋅-54-4|1-1213-1831-293|
Step 6.2.5
Evaluate |1-1213-1831-293|.
Step 6.2.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 6.2.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 6.2.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 6.2.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-183-293|
Step 6.2.5.1.4
Multiply element a11 by its cofactor.
1|-183-293|
Step 6.2.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|3313|
Step 6.2.5.1.6
Multiply element a12 by its cofactor.
12|3313|
Step 6.2.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|3-181-29|
Step 6.2.5.1.8
Multiply element a13 by its cofactor.
1|3-181-29|
Step 6.2.5.1.9
Add the terms together.
0-25⋅0-3⋅-54-4(1|-183-293|+12|3313|+1|3-181-29|)
0-25⋅0-3⋅-54-4(1|-183-293|+12|3313|+1|3-181-29|)
Step 6.2.5.2
Evaluate |-183-293|.
Step 6.2.5.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-25⋅0-3⋅-54-4(1(-18⋅3-(-29⋅3))+12|3313|+1|3-181-29|)
Step 6.2.5.2.2
Simplify the determinant.
Step 6.2.5.2.2.1
Simplify each term.
Step 6.2.5.2.2.1.1
Multiply -18 by 3.
0-25⋅0-3⋅-54-4(1(-54-(-29⋅3))+12|3313|+1|3-181-29|)
Step 6.2.5.2.2.1.2
Multiply -(-29⋅3).
Step 6.2.5.2.2.1.2.1
Multiply -29 by 3.
0-25⋅0-3⋅-54-4(1(-54--87)+12|3313|+1|3-181-29|)
Step 6.2.5.2.2.1.2.2
Multiply -1 by -87.
0-25⋅0-3⋅-54-4(1(-54+87)+12|3313|+1|3-181-29|)
0-25⋅0-3⋅-54-4(1(-54+87)+12|3313|+1|3-181-29|)
0-25⋅0-3⋅-54-4(1(-54+87)+12|3313|+1|3-181-29|)
Step 6.2.5.2.2.2
Add -54 and 87.
0-25⋅0-3⋅-54-4(1⋅33+12|3313|+1|3-181-29|)
0-25⋅0-3⋅-54-4(1⋅33+12|3313|+1|3-181-29|)
0-25⋅0-3⋅-54-4(1⋅33+12|3313|+1|3-181-29|)
Step 6.2.5.3
Evaluate |3313|.
Step 6.2.5.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-25⋅0-3⋅-54-4(1⋅33+12(3⋅3-1⋅3)+1|3-181-29|)
Step 6.2.5.3.2
Simplify the determinant.
Step 6.2.5.3.2.1
Simplify each term.
Step 6.2.5.3.2.1.1
Multiply 3 by 3.
0-25⋅0-3⋅-54-4(1⋅33+12(9-1⋅3)+1|3-181-29|)
Step 6.2.5.3.2.1.2
Multiply -1 by 3.
0-25⋅0-3⋅-54-4(1⋅33+12(9-3)+1|3-181-29|)
0-25⋅0-3⋅-54-4(1⋅33+12(9-3)+1|3-181-29|)
Step 6.2.5.3.2.2
Subtract 3 from 9.
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1|3-181-29|)
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1|3-181-29|)
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1|3-181-29|)
Step 6.2.5.4
Evaluate |3-181-29|.
Step 6.2.5.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1(3⋅-29-1⋅-18))
Step 6.2.5.4.2
Simplify the determinant.
Step 6.2.5.4.2.1
Simplify each term.
Step 6.2.5.4.2.1.1
Multiply 3 by -29.
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1(-87-1⋅-18))
Step 6.2.5.4.2.1.2
Multiply -1 by -18.
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1(-87+18))
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1(-87+18))
Step 6.2.5.4.2.2
Add -87 and 18.
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1⋅-69)
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1⋅-69)
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1⋅-69)
Step 6.2.5.5
Simplify the determinant.
Step 6.2.5.5.1
Simplify each term.
Step 6.2.5.5.1.1
Multiply 33 by 1.
0-25⋅0-3⋅-54-4(33+12⋅6+1⋅-69)
Step 6.2.5.5.1.2
Multiply 12 by 6.
0-25⋅0-3⋅-54-4(33+72+1⋅-69)
Step 6.2.5.5.1.3
Multiply -69 by 1.
0-25⋅0-3⋅-54-4(33+72-69)
0-25⋅0-3⋅-54-4(33+72-69)
Step 6.2.5.5.2
Add 33 and 72.
0-25⋅0-3⋅-54-4(105-69)
Step 6.2.5.5.3
Subtract 69 from 105.
0-25⋅0-3⋅-54-4⋅36
0-25⋅0-3⋅-54-4⋅36
0-25⋅0-3⋅-54-4⋅36
Step 6.2.6
Simplify the determinant.
Step 6.2.6.1
Simplify each term.
Step 6.2.6.1.1
Multiply -25 by 0.
0+0-3⋅-54-4⋅36
Step 6.2.6.1.2
Multiply -3 by -54.
0+0+162-4⋅36
Step 6.2.6.1.3
Multiply -4 by 36.
0+0+162-144
0+0+162-144
Step 6.2.6.2
Add 0 and 0.
0+162-144
Step 6.2.6.3
Add 0 and 162.
162-144
Step 6.2.6.4
Subtract 144 from 162.
18
18
Dx=18
Step 6.3
Use the formula to solve for x.
x=DxD
Step 6.4
Substitute -2 for D and 18 for Dx in the formula.
x=18-2
Step 6.5
Divide 18 by -2.
x=-9
x=-9
Step 7
Step 7.1
Replace column 3 of the coefficient matrix that corresponds to the y-coefficients of the system with [25-12-18-29].
|0125410-12-13-2-18-310-29-4|
Step 7.2
Find the determinant.
Step 7.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Step 7.2.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Step 7.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 7.2.1.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1-12-13-18-31-29-4|
Step 7.2.1.4
Multiply element a12 by its cofactor.
-1|1-12-13-18-31-29-4|
Step 7.2.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|02543-18-31-29-4|
Step 7.2.1.6
Multiply element a22 by its cofactor.
0|02543-18-31-29-4|
Step 7.2.1.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|02541-12-11-29-4|
Step 7.2.1.8
Multiply element a32 by its cofactor.
2|02541-12-11-29-4|
Step 7.2.1.9
The minor for a42 is the determinant with row 4 and column 2 deleted.
|02541-12-13-18-3|
Step 7.2.1.10
Multiply element a42 by its cofactor.
0|02541-12-13-18-3|
Step 7.2.1.11
Add the terms together.
-1|1-12-13-18-31-29-4|+0|02543-18-31-29-4|+2|02541-12-11-29-4|+0|02541-12-13-18-3|
-1|1-12-13-18-31-29-4|+0|02543-18-31-29-4|+2|02541-12-11-29-4|+0|02541-12-13-18-3|
Step 7.2.2
Multiply 0 by |02543-18-31-29-4|.
-1|1-12-13-18-31-29-4|+0+2|02541-12-11-29-4|+0|02541-12-13-18-3|
Step 7.2.3
Multiply 0 by |02541-12-13-18-3|.
-1|1-12-13-18-31-29-4|+0+2|02541-12-11-29-4|+0
Step 7.2.4
Evaluate |1-12-13-18-31-29-4|.
Step 7.2.4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 7.2.4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 7.2.4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 7.2.4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-18-3-29-4|
Step 7.2.4.1.4
Multiply element a11 by its cofactor.
1|-18-3-29-4|
Step 7.2.4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|3-31-4|
Step 7.2.4.1.6
Multiply element a12 by its cofactor.
12|3-31-4|
Step 7.2.4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|3-181-29|
Step 7.2.4.1.8
Multiply element a13 by its cofactor.
-1|3-181-29|
Step 7.2.4.1.9
Add the terms together.
-1(1|-18-3-29-4|+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1|-18-3-29-4|+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Step 7.2.4.2
Evaluate |-18-3-29-4|.
Step 7.2.4.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1(1(-18⋅-4-(-29⋅-3))+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Step 7.2.4.2.2
Simplify the determinant.
Step 7.2.4.2.2.1
Simplify each term.
Step 7.2.4.2.2.1.1
Multiply -18 by -4.
-1(1(72-(-29⋅-3))+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Step 7.2.4.2.2.1.2
Multiply -(-29⋅-3).
Step 7.2.4.2.2.1.2.1
Multiply -29 by -3.
-1(1(72-1⋅87)+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Step 7.2.4.2.2.1.2.2
Multiply -1 by 87.
-1(1(72-87)+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1(72-87)+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1(72-87)+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Step 7.2.4.2.2.2
Subtract 87 from 72.
-1(1⋅-15+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Step 7.2.4.3
Evaluate |3-31-4|.
Step 7.2.4.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1(1⋅-15+12(3⋅-4-1⋅-3)-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Step 7.2.4.3.2
Simplify the determinant.
Step 7.2.4.3.2.1
Simplify each term.
Step 7.2.4.3.2.1.1
Multiply 3 by -4.
-1(1⋅-15+12(-12-1⋅-3)-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Step 7.2.4.3.2.1.2
Multiply -1 by -3.
-1(1⋅-15+12(-12+3)-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12(-12+3)-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Step 7.2.4.3.2.2
Add -12 and 3.
-1(1⋅-15+12⋅-9-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12⋅-9-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12⋅-9-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Step 7.2.4.4
Evaluate |3-181-29|.
Step 7.2.4.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
-1(1⋅-15+12⋅-9-1(3⋅-29-1⋅-18))+0+2|02541-12-11-29-4|+0
Step 7.2.4.4.2
Simplify the determinant.
Step 7.2.4.4.2.1
Simplify each term.
Step 7.2.4.4.2.1.1
Multiply 3 by -29.
-1(1⋅-15+12⋅-9-1(-87-1⋅-18))+0+2|02541-12-11-29-4|+0
Step 7.2.4.4.2.1.2
Multiply -1 by -18.
-1(1⋅-15+12⋅-9-1(-87+18))+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12⋅-9-1(-87+18))+0+2|02541-12-11-29-4|+0
Step 7.2.4.4.2.2
Add -87 and 18.
-1(1⋅-15+12⋅-9-1⋅-69)+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12⋅-9-1⋅-69)+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12⋅-9-1⋅-69)+0+2|02541-12-11-29-4|+0
Step 7.2.4.5
Simplify the determinant.
Step 7.2.4.5.1
Simplify each term.
Step 7.2.4.5.1.1
Multiply -15 by 1.
-1(-15+12⋅-9-1⋅-69)+0+2|02541-12-11-29-4|+0
Step 7.2.4.5.1.2
Multiply 12 by -9.
-1(-15-108-1⋅-69)+0+2|02541-12-11-29-4|+0
Step 7.2.4.5.1.3
Multiply -1 by -69.
-1(-15-108+69)+0+2|02541-12-11-29-4|+0
-1(-15-108+69)+0+2|02541-12-11-29-4|+0
Step 7.2.4.5.2
Subtract 108 from -15.
-1(-123+69)+0+2|02541-12-11-29-4|+0
Step 7.2.4.5.3
Add -123 and 69.
-1⋅-54+0+2|02541-12-11-29-4|+0
-1⋅-54+0+2|02541-12-11-29-4|+0
-1⋅-54+0+2|02541-12-11-29-4|+0
Step 7.2.5
Evaluate |02541-12-11-29-4|.
Step 7.2.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 7.2.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 7.2.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 7.2.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-12-1-29-4|
Step 7.2.5.1.4
Multiply element a11 by its cofactor.
0|-12-1-29-4|
Step 7.2.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1-11-4|
Step 7.2.5.1.6
Multiply element a12 by its cofactor.
-25|1-11-4|
Step 7.2.5.1.7
The minor for a13 is the determinant with row 1 and column deleted.
Step 7.2.5.1.8
Multiply element by its cofactor.
Step 7.2.5.1.9
Add the terms together.
Step 7.2.5.2
Multiply by .
Step 7.2.5.3
Evaluate .
Step 7.2.5.3.1
The determinant of a matrix can be found using the formula .
Step 7.2.5.3.2
Simplify the determinant.
Step 7.2.5.3.2.1
Simplify each term.
Step 7.2.5.3.2.1.1
Multiply by .
Step 7.2.5.3.2.1.2
Multiply by .
Step 7.2.5.3.2.2
Add and .
Step 7.2.5.4
Evaluate .
Step 7.2.5.4.1
The determinant of a matrix can be found using the formula .
Step 7.2.5.4.2
Simplify the determinant.
Step 7.2.5.4.2.1
Simplify each term.
Step 7.2.5.4.2.1.1
Multiply by .
Step 7.2.5.4.2.1.2
Multiply by .
Step 7.2.5.4.2.2
Add and .
Step 7.2.5.5
Simplify the determinant.
Step 7.2.5.5.1
Simplify each term.
Step 7.2.5.5.1.1
Multiply by .
Step 7.2.5.5.1.2
Multiply by .
Step 7.2.5.5.2
Add and .
Step 7.2.5.5.3
Subtract from .
Step 7.2.6
Simplify the determinant.
Step 7.2.6.1
Simplify each term.
Step 7.2.6.1.1
Multiply by .
Step 7.2.6.1.2
Multiply by .
Step 7.2.6.2
Add and .
Step 7.2.6.3
Add and .
Step 7.2.6.4
Add and .
Step 7.3
Use the formula to solve for .
Step 7.4
Substitute for and for in the formula.
Step 7.5
Divide by .
Step 8
Step 8.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Step 8.2
Find the determinant.
Step 8.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
Step 8.2.1.1
Consider the corresponding sign chart.
Step 8.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 8.2.1.3
The minor for is the determinant with row and column deleted.
Step 8.2.1.4
Multiply element by its cofactor.
Step 8.2.1.5
The minor for is the determinant with row and column deleted.
Step 8.2.1.6
Multiply element by its cofactor.
Step 8.2.1.7
The minor for is the determinant with row and column deleted.
Step 8.2.1.8
Multiply element by its cofactor.
Step 8.2.1.9
The minor for is the determinant with row and column deleted.
Step 8.2.1.10
Multiply element by its cofactor.
Step 8.2.1.11
Add the terms together.
Step 8.2.2
Multiply by .
Step 8.2.3
Multiply by .
Step 8.2.4
Evaluate .
Step 8.2.4.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Step 8.2.4.1.1
Consider the corresponding sign chart.
Step 8.2.4.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 8.2.4.1.3
The minor for is the determinant with row and column deleted.
Step 8.2.4.1.4
Multiply element by its cofactor.
Step 8.2.4.1.5
The minor for is the determinant with row and column deleted.
Step 8.2.4.1.6
Multiply element by its cofactor.
Step 8.2.4.1.7
The minor for is the determinant with row and column deleted.
Step 8.2.4.1.8
Multiply element by its cofactor.
Step 8.2.4.1.9
Add the terms together.
Step 8.2.4.2
Evaluate .
Step 8.2.4.2.1
The determinant of a matrix can be found using the formula .
Step 8.2.4.2.2
Simplify the determinant.
Step 8.2.4.2.2.1
Simplify each term.
Step 8.2.4.2.2.1.1
Multiply by .
Step 8.2.4.2.2.1.2
Multiply by .
Step 8.2.4.2.2.2
Add and .
Step 8.2.4.3
Evaluate .
Step 8.2.4.3.1
The determinant of a matrix can be found using the formula .
Step 8.2.4.3.2
Simplify the determinant.
Step 8.2.4.3.2.1
Simplify each term.
Step 8.2.4.3.2.1.1
Multiply by .
Step 8.2.4.3.2.1.2
Multiply by .
Step 8.2.4.3.2.2
Add and .
Step 8.2.4.4
Evaluate .
Step 8.2.4.4.1
The determinant of a matrix can be found using the formula .
Step 8.2.4.4.2
Simplify the determinant.
Step 8.2.4.4.2.1
Simplify each term.
Step 8.2.4.4.2.1.1
Multiply by .
Step 8.2.4.4.2.1.2
Multiply by .
Step 8.2.4.4.2.2
Subtract from .
Step 8.2.4.5
Simplify the determinant.
Step 8.2.4.5.1
Simplify each term.
Step 8.2.4.5.1.1
Multiply by .
Step 8.2.4.5.1.2
Multiply by .
Step 8.2.4.5.1.3
Multiply by .
Step 8.2.4.5.2
Add and .
Step 8.2.4.5.3
Subtract from .
Step 8.2.5
Evaluate .
Step 8.2.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Step 8.2.5.1.1
Consider the corresponding sign chart.
Step 8.2.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Step 8.2.5.1.3
The minor for is the determinant with row and column deleted.
Step 8.2.5.1.4
Multiply element by its cofactor.
Step 8.2.5.1.5
The minor for is the determinant with row and column deleted.
Step 8.2.5.1.6
Multiply element by its cofactor.
Step 8.2.5.1.7
The minor for is the determinant with row and column deleted.
Step 8.2.5.1.8
Multiply element by its cofactor.
Step 8.2.5.1.9
Add the terms together.
Step 8.2.5.2
Multiply by .
Step 8.2.5.3
Evaluate .
Step 8.2.5.3.1
The determinant of a matrix can be found using the formula .
Step 8.2.5.3.2
Simplify the determinant.
Step 8.2.5.3.2.1
Simplify each term.
Step 8.2.5.3.2.1.1
Multiply by .
Step 8.2.5.3.2.1.2
Multiply by .
Step 8.2.5.3.2.2
Add and .
Step 8.2.5.4
Evaluate .
Step 8.2.5.4.1
The determinant of a matrix can be found using the formula .
Step 8.2.5.4.2
Simplify the determinant.
Step 8.2.5.4.2.1
Simplify each term.
Step 8.2.5.4.2.1.1
Multiply by .
Step 8.2.5.4.2.1.2
Multiply by .
Step 8.2.5.4.2.2
Subtract from .
Step 8.2.5.5
Simplify the determinant.
Step 8.2.5.5.1
Simplify each term.
Step 8.2.5.5.1.1
Multiply by .
Step 8.2.5.5.1.2
Multiply by .
Step 8.2.5.5.2
Subtract from .
Step 8.2.5.5.3
Add and .
Step 8.2.6
Simplify the determinant.
Step 8.2.6.1
Simplify each term.
Step 8.2.6.1.1
Multiply by .
Step 8.2.6.1.2
Multiply by .
Step 8.2.6.2
Add and .
Step 8.2.6.3
Subtract from .
Step 8.2.6.4
Add and .
Step 8.3
Use the formula to solve for .
Step 8.4
Substitute for and for in the formula.
Step 8.5
Divide by .
Step 9
List the solution to the system of equations.