Enter a problem...
Finite Math Examples
(−48,0) , (0,−8)
Step 1
Use y=mx+b to calculate the equation of the line, where m represents the slope and b represents the y-intercept.
To calculate the equation of the line, use the y=mx+b format.
Step 2
Slope is equal to the change in y over the change in x, or rise over run.
m=(change in y)(change in x)
Step 3
The change in x is equal to the difference in x-coordinates (also called run), and the change in y is equal to the difference in y-coordinates (also called rise).
m=y2−y1x2−x1
Step 4
Substitute in the values of x and y into the equation to find the slope.
m=−8−(0)0−(−48)
Step 5
Step 5.1
Reduce the expression by cancelling the common factors.
Step 5.1.1
Cancel the common factor of −8−(0) and 0−(−48).
Step 5.1.1.1
Rewrite −8 as −1(8).
m=−1⋅8−(0)0−(−48)
Step 5.1.1.2
Factor −1 out of −1(8)−(0).
m=−1(8+0)0−(−48)
Step 5.1.1.3
Reorder terms.
m=−1(8+0)0−48⋅−1
Step 5.1.1.4
Factor 8 out of −1(8+0).
m=8(−1(1+0))0−48⋅−1
Step 5.1.1.5
Cancel the common factors.
Step 5.1.1.5.1
Factor 8 out of 0.
m=8(−1(1+0))8(0)−48⋅−1
Step 5.1.1.5.2
Factor 8 out of −48⋅−1.
m=8(−1(1+0))8(0)+8(−6⋅−1)
Step 5.1.1.5.3
Factor 8 out of 8(0)+8(−6⋅−1).
m=8(−1(1+0))8(0−6⋅−1)
Step 5.1.1.5.4
Cancel the common factor.
m=8(−1(1+0))8(0−6⋅−1)
Step 5.1.1.5.5
Rewrite the expression.
m=−1(1+0)0−6⋅−1
m=−1(1+0)0−6⋅−1
m=−1(1+0)0−6⋅−1
Step 5.1.2
Add 1 and 0.
m=−1⋅10−6⋅−1
m=−1⋅10−6⋅−1
Step 5.2
Simplify the denominator.
Step 5.2.1
Multiply −6 by −1.
m=−1⋅10+6
Step 5.2.2
Add 0 and 6.
m=−1⋅16
m=−1⋅16
Step 5.3
Simplify the expression.
Step 5.3.1
Multiply −1 by 1.
m=−16
Step 5.3.2
Move the negative in front of the fraction.
m=−16
m=−16
m=−16
Step 6
Step 6.1
Use the formula for the equation of a line to find b.
y=mx+b
Step 6.2
Substitute the value of m into the equation.
y=(−16)⋅x+b
Step 6.3
Substitute the value of x into the equation.
y=(−16)⋅(−48)+b
Step 6.4
Substitute the value of y into the equation.
0=(−16)⋅(−48)+b
Step 6.5
Find the value of b.
Step 6.5.1
Rewrite the equation as −16⋅−48+b=0.
−16⋅−48+b=0
Step 6.5.2
Simplify each term.
Step 6.5.2.1
Cancel the common factor of 6.
Step 6.5.2.1.1
Move the leading negative in −16 into the numerator.
−16⋅−48+b=0
Step 6.5.2.1.2
Factor 6 out of −48.
−16⋅(6(−8))+b=0
Step 6.5.2.1.3
Cancel the common factor.
−16⋅(6⋅−8)+b=0
Step 6.5.2.1.4
Rewrite the expression.
−1⋅−8+b=0
−1⋅−8+b=0
Step 6.5.2.2
Multiply −1 by −8.
8+b=0
8+b=0
Step 6.5.3
Subtract 8 from both sides of the equation.
b=−8
b=−8
b=−8
Step 7
Now that the values of m (slope) and b (y-intercept) are known, substitute them into y=mx+b to find the equation of the line.
y=−16x−8
Step 8