Enter a problem...
Finite Math Examples
[5923]+6[5923]+6
Step 1
Adding 66 to a 2×22×2 square matrix is the same as adding 66 times the 2×22×2 identity matrix.
[5923]+6[1001][5923]+6[1001]
Step 2
Multiply 66 by each element of the matrix.
[5923]+[6⋅16⋅06⋅06⋅1][5923]+[6⋅16⋅06⋅06⋅1]
Step 3
Step 3.1
Multiply 66 by 11.
[5923]+[66⋅06⋅06⋅1][5923]+[66⋅06⋅06⋅1]
Step 3.2
Multiply 66 by 00.
[5923]+[606⋅06⋅1][5923]+[606⋅06⋅1]
Step 3.3
Multiply 66 by 00.
[5923]+[6006⋅1][5923]+[6006⋅1]
Step 3.4
Multiply 66 by 11.
[5923]+[6006][5923]+[6006]
[5923]+[6006][5923]+[6006]
Step 4
Add the corresponding elements.
[5+69+02+03+6][5+69+02+03+6]
Step 5
Step 5.1
Add 55 and 66.
[119+02+03+6][119+02+03+6]
Step 5.2
Add 99 and 00.
[1192+03+6][1192+03+6]
Step 5.3
Add 22 and 00.
[11923+6][11923+6]
Step 5.4
Add 33 and 66.
[11929][11929]
[11929][11929]
Step 6
The inverse of a 2×22×2 matrix can be found using the formula 1ad-bc[d-b-ca]1ad−bc[d−b−ca] where ad-bcad−bc is the determinant.
Step 7
Step 7.1
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
11⋅9-2⋅911⋅9−2⋅9
Step 7.2
Simplify the determinant.
Step 7.2.1
Simplify each term.
Step 7.2.1.1
Multiply 1111 by 99.
99-2⋅999−2⋅9
Step 7.2.1.2
Multiply -2−2 by 99.
99-1899−18
99-1899−18
Step 7.2.2
Subtract 1818 from 9999.
8181
8181
8181
Step 8
Since the determinant is non-zero, the inverse exists.
Step 9
Substitute the known values into the formula for the inverse.
181[9-9-211]181[9−9−211]
Step 10
Multiply 181181 by each element of the matrix.
[181⋅9181⋅-9181⋅-2181⋅11][181⋅9181⋅−9181⋅−2181⋅11]
Step 11
Step 11.1
Cancel the common factor of 99.
Step 11.1.1
Factor 99 out of 8181.
[19(9)⋅9181⋅-9181⋅-2181⋅11]⎡⎣19(9)⋅9181⋅−9181⋅−2181⋅11⎤⎦
Step 11.1.2
Cancel the common factor.
[19⋅9⋅9181⋅-9181⋅-2181⋅11]
Step 11.1.3
Rewrite the expression.
[19181⋅-9181⋅-2181⋅11]
[19181⋅-9181⋅-2181⋅11]
Step 11.2
Cancel the common factor of 9.
Step 11.2.1
Factor 9 out of 81.
[1919(9)⋅-9181⋅-2181⋅11]
Step 11.2.2
Factor 9 out of -9.
[1919⋅9⋅(9⋅-1)181⋅-2181⋅11]
Step 11.2.3
Cancel the common factor.
[1919⋅9⋅(9⋅-1)181⋅-2181⋅11]
Step 11.2.4
Rewrite the expression.
[1919⋅-1181⋅-2181⋅11]
[1919⋅-1181⋅-2181⋅11]
Step 11.3
Combine 19 and -1.
[19-19181⋅-2181⋅11]
Step 11.4
Move the negative in front of the fraction.
[19-19181⋅-2181⋅11]
Step 11.5
Combine 181 and -2.
[19-19-281181⋅11]
Step 11.6
Move the negative in front of the fraction.
[19-19-281181⋅11]
Step 11.7
Combine 181 and 11.
[19-19-2811181]
[19-19-2811181]