Enter a problem...
Finite Math Examples
16C11(12)11(1-12)16-1116C11(12)11(1−12)16−11
Step 1
Step 1.1
Apply the product rule to 1212.
16C11111211(1-12)16-1116C11111211(1−12)16−11
Step 1.2
Simplify the expression.
Step 1.2.1
One to any power is one.
16C111211(1-12)16-1116C111211(1−12)16−11
Step 1.2.2
Raise 22 to the power of 1111.
16C1112048(1-12)16-1116C1112048(1−12)16−11
16C1112048(1-12)16-1116C1112048(1−12)16−11
Step 1.3
Cancel the common factor of 1616.
Step 1.3.1
Factor 1616 out of 16C1116C11.
16(C11)12048(1-12)16-1116(C11)12048(1−12)16−11
Step 1.3.2
Factor 1616 out of 20482048.
16(C11)116(128)(1-12)16-1116(C11)116(128)(1−12)16−11
Step 1.3.3
Cancel the common factor.
16C11116⋅128(1-12)16-11
Step 1.3.4
Rewrite the expression.
C111128(1-12)16-11
C111128(1-12)16-11
Step 1.4
Combine C11 and 1128.
C11128(1-12)16-11
Step 1.5
Simplify the expression.
Step 1.5.1
Write 1 as a fraction with a common denominator.
C11128(22-12)16-11
Step 1.5.2
Combine the numerators over the common denominator.
C11128(2-12)16-11
Step 1.5.3
Subtract 1 from 2.
C11128(12)16-11
Step 1.5.4
Subtract 11 from 16.
C11128(12)5
Step 1.5.5
Apply the product rule to 12.
C11128⋅1525
C11128⋅1525
Step 1.6
Combine.
C11⋅15128⋅25
Step 1.7
One to any power is one.
C11⋅1128⋅25
C11⋅1128⋅25
Step 2
Step 2.1
Rewrite 128 as 27.
C11⋅127⋅25
Step 2.2
Use the power rule aman=am+n to combine exponents.
C11⋅127+5
Step 2.3
Add 7 and 5.
C11⋅1212
C11⋅1212
Step 3
Step 3.1
Multiply C11 by 1.
C11212
Step 3.2
Raise 2 to the power of 12.
C114096
C114096