Finite Math Examples

Find the Number of Possibilities 16C^11(1/2)^11(1-1/2)^(16-11)
16C11(12)11(1-12)16-1116C11(12)11(112)1611
Step 1
Simplify terms.
Tap for more steps...
Step 1.1
Apply the product rule to 1212.
16C11111211(1-12)16-1116C11111211(112)1611
Step 1.2
Simplify the expression.
Tap for more steps...
Step 1.2.1
One to any power is one.
16C111211(1-12)16-1116C111211(112)1611
Step 1.2.2
Raise 22 to the power of 1111.
16C1112048(1-12)16-1116C1112048(112)1611
16C1112048(1-12)16-1116C1112048(112)1611
Step 1.3
Cancel the common factor of 1616.
Tap for more steps...
Step 1.3.1
Factor 1616 out of 16C1116C11.
16(C11)12048(1-12)16-1116(C11)12048(112)1611
Step 1.3.2
Factor 1616 out of 20482048.
16(C11)116(128)(1-12)16-1116(C11)116(128)(112)1611
Step 1.3.3
Cancel the common factor.
16C11116128(1-12)16-11
Step 1.3.4
Rewrite the expression.
C111128(1-12)16-11
C111128(1-12)16-11
Step 1.4
Combine C11 and 1128.
C11128(1-12)16-11
Step 1.5
Simplify the expression.
Tap for more steps...
Step 1.5.1
Write 1 as a fraction with a common denominator.
C11128(22-12)16-11
Step 1.5.2
Combine the numerators over the common denominator.
C11128(2-12)16-11
Step 1.5.3
Subtract 1 from 2.
C11128(12)16-11
Step 1.5.4
Subtract 11 from 16.
C11128(12)5
Step 1.5.5
Apply the product rule to 12.
C111281525
C111281525
Step 1.6
Combine.
C111512825
Step 1.7
One to any power is one.
C11112825
C11112825
Step 2
Simplify the denominator.
Tap for more steps...
Step 2.1
Rewrite 128 as 27.
C1112725
Step 2.2
Use the power rule aman=am+n to combine exponents.
C11127+5
Step 2.3
Add 7 and 5.
C111212
C111212
Step 3
Simplify the expression.
Tap for more steps...
Step 3.1
Multiply C11 by 1.
C11212
Step 3.2
Raise 2 to the power of 12.
C114096
C114096
 [x2  12  π  xdx ]