Finite Math Examples

Find the Sample Standard Deviation 600 , 470 , 170 , 430 , 300
, , , ,
Step 1
Find the mean.
Tap for more steps...
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
Step 1.2
Cancel the common factor of and .
Tap for more steps...
Step 1.2.1
Factor out of .
Step 1.2.2
Factor out of .
Step 1.2.3
Factor out of .
Step 1.2.4
Factor out of .
Step 1.2.5
Factor out of .
Step 1.2.6
Factor out of .
Step 1.2.7
Factor out of .
Step 1.2.8
Factor out of .
Step 1.2.9
Factor out of .
Step 1.2.10
Cancel the common factors.
Tap for more steps...
Step 1.2.10.1
Factor out of .
Step 1.2.10.2
Cancel the common factor.
Step 1.2.10.3
Rewrite the expression.
Step 1.2.10.4
Divide by .
Step 1.3
Simplify by adding numbers.
Tap for more steps...
Step 1.3.1
Add and .
Step 1.3.2
Add and .
Step 1.3.3
Add and .
Step 1.3.4
Add and .
Step 2
Simplify each value in the list.
Tap for more steps...
Step 2.1
Convert to a decimal value.
Step 2.2
Convert to a decimal value.
Step 2.3
Convert to a decimal value.
Step 2.4
Convert to a decimal value.
Step 2.5
Convert to a decimal value.
Step 2.6
The simplified values are .
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
Step 4
Set up the formula for standard deviation for this set of numbers.
Step 5
Simplify the result.
Tap for more steps...
Step 5.1
Subtract from .
Step 5.2
Raise to the power of .
Step 5.3
Subtract from .
Step 5.4
Raise to the power of .
Step 5.5
Subtract from .
Step 5.6
Raise to the power of .
Step 5.7
Subtract from .
Step 5.8
Raise to the power of .
Step 5.9
Subtract from .
Step 5.10
Raise to the power of .
Step 5.11
Add and .
Step 5.12
Add and .
Step 5.13
Add and .
Step 5.14
Add and .
Step 5.15
Subtract from .
Step 5.16
Divide by .
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.