Enter a problem...
Finite Math Examples
22 , 66 , 77 , 88 , 1111 , 1111 , 1111 , 1212 , 1212 , 1313 , 1313 , 1414
Step 1
Step 1.1
The mean of a set of numbers is the sum divided by the number of terms.
‾x=2+6+7+8+11+11+11+12+12+13+13+1412¯x=2+6+7+8+11+11+11+12+12+13+13+1412
Step 1.2
Simplify the numerator.
Step 1.2.1
Add 22 and 66.
‾x=8+7+8+11+11+11+12+12+13+13+1412¯x=8+7+8+11+11+11+12+12+13+13+1412
Step 1.2.2
Add 88 and 77.
‾x=15+8+11+11+11+12+12+13+13+1412¯x=15+8+11+11+11+12+12+13+13+1412
Step 1.2.3
Add 1515 and 88.
‾x=23+11+11+11+12+12+13+13+1412¯x=23+11+11+11+12+12+13+13+1412
Step 1.2.4
Add 2323 and 1111.
‾x=34+11+11+12+12+13+13+1412¯x=34+11+11+12+12+13+13+1412
Step 1.2.5
Add 3434 and 1111.
‾x=45+11+12+12+13+13+1412¯x=45+11+12+12+13+13+1412
Step 1.2.6
Add 4545 and 1111.
‾x=56+12+12+13+13+1412¯x=56+12+12+13+13+1412
Step 1.2.7
Add 5656 and 1212.
‾x=68+12+13+13+1412¯x=68+12+13+13+1412
Step 1.2.8
Add 6868 and 1212.
‾x=80+13+13+1412¯x=80+13+13+1412
Step 1.2.9
Add 8080 and 1313.
‾x=93+13+1412¯x=93+13+1412
Step 1.2.10
Add 9393 and 1313.
‾x=106+1412¯x=106+1412
Step 1.2.11
Add 106106 and 1414.
‾x=12012¯x=12012
‾x=12012¯x=12012
Step 1.3
Divide 120 by 12.
‾x=10
‾x=10
Step 2
Step 2.1
Convert 2 to a decimal value.
2
Step 2.2
Convert 6 to a decimal value.
6
Step 2.3
Convert 7 to a decimal value.
7
Step 2.4
Convert 8 to a decimal value.
8
Step 2.5
Convert 11 to a decimal value.
11
Step 2.6
Convert 12 to a decimal value.
12
Step 2.7
Convert 13 to a decimal value.
13
Step 2.8
Convert 14 to a decimal value.
14
Step 2.9
The simplified values are 2,6,7,8,11,11,11,12,12,13,13,14.
2,6,7,8,11,11,11,12,12,13,13,14
2,6,7,8,11,11,11,12,12,13,13,14
Step 3
Set up the formula for sample standard deviation. The standard deviation of a set of values is a measure of the spread of its values.
s=n∑i=1√(xi-xavg)2n-1
Step 4
Set up the formula for standard deviation for this set of numbers.
s=√(2-10)2+(6-10)2+(7-10)2+(8-10)2+(11-10)2+(11-10)2+(11-10)2+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5
Step 5.1
Subtract 10 from 2.
s=√(-8)2+(6-10)2+(7-10)2+(8-10)2+(11-10)2+(11-10)2+(11-10)2+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.2
Raise -8 to the power of 2.
s=√64+(6-10)2+(7-10)2+(8-10)2+(11-10)2+(11-10)2+(11-10)2+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.3
Subtract 10 from 6.
s=√64+(-4)2+(7-10)2+(8-10)2+(11-10)2+(11-10)2+(11-10)2+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.4
Raise -4 to the power of 2.
s=√64+16+(7-10)2+(8-10)2+(11-10)2+(11-10)2+(11-10)2+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.5
Subtract 10 from 7.
s=√64+16+(-3)2+(8-10)2+(11-10)2+(11-10)2+(11-10)2+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.6
Raise -3 to the power of 2.
s=√64+16+9+(8-10)2+(11-10)2+(11-10)2+(11-10)2+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.7
Subtract 10 from 8.
s=√64+16+9+(-2)2+(11-10)2+(11-10)2+(11-10)2+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.8
Raise -2 to the power of 2.
s=√64+16+9+4+(11-10)2+(11-10)2+(11-10)2+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.9
Subtract 10 from 11.
s=√64+16+9+4+12+(11-10)2+(11-10)2+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.10
One to any power is one.
s=√64+16+9+4+1+(11-10)2+(11-10)2+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.11
Subtract 10 from 11.
s=√64+16+9+4+1+12+(11-10)2+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.12
One to any power is one.
s=√64+16+9+4+1+1+(11-10)2+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.13
Subtract 10 from 11.
s=√64+16+9+4+1+1+12+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.14
One to any power is one.
s=√64+16+9+4+1+1+1+(12-10)2+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.15
Subtract 10 from 12.
s=√64+16+9+4+1+1+1+22+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.16
Raise 2 to the power of 2.
s=√64+16+9+4+1+1+1+4+(12-10)2+(13-10)2+(13-10)2+(14-10)212-1
Step 5.17
Subtract 10 from 12.
s=√64+16+9+4+1+1+1+4+22+(13-10)2+(13-10)2+(14-10)212-1
Step 5.18
Raise 2 to the power of 2.
s=√64+16+9+4+1+1+1+4+4+(13-10)2+(13-10)2+(14-10)212-1
Step 5.19
Subtract 10 from 13.
s=√64+16+9+4+1+1+1+4+4+32+(13-10)2+(14-10)212-1
Step 5.20
Raise 3 to the power of 2.
s=√64+16+9+4+1+1+1+4+4+9+(13-10)2+(14-10)212-1
Step 5.21
Subtract 10 from 13.
s=√64+16+9+4+1+1+1+4+4+9+32+(14-10)212-1
Step 5.22
Raise 3 to the power of 2.
s=√64+16+9+4+1+1+1+4+4+9+9+(14-10)212-1
Step 5.23
Subtract 10 from 14.
s=√64+16+9+4+1+1+1+4+4+9+9+4212-1
Step 5.24
Raise 4 to the power of 2.
s=√64+16+9+4+1+1+1+4+4+9+9+1612-1
Step 5.25
Add 64 and 16.
s=√80+9+4+1+1+1+4+4+9+9+1612-1
Step 5.26
Add 80 and 9.
s=√89+4+1+1+1+4+4+9+9+1612-1
Step 5.27
Add 89 and 4.
s=√93+1+1+1+4+4+9+9+1612-1
Step 5.28
Add 93 and 1.
s=√94+1+1+4+4+9+9+1612-1
Step 5.29
Add 94 and 1.
s=√95+1+4+4+9+9+1612-1
Step 5.30
Add 95 and 1.
s=√96+4+4+9+9+1612-1
Step 5.31
Add 96 and 4.
s=√100+4+9+9+1612-1
Step 5.32
Add 100 and 4.
s=√104+9+9+1612-1
Step 5.33
Add 104 and 9.
s=√113+9+1612-1
Step 5.34
Add 113 and 9.
s=√122+1612-1
Step 5.35
Add 122 and 16.
s=√13812-1
Step 5.36
Subtract 1 from 12.
s=√13811
Step 5.37
Rewrite √13811 as √138√11.
s=√138√11
Step 5.38
Multiply √138√11 by √11√11.
s=√138√11⋅√11√11
Step 5.39
Combine and simplify the denominator.
Step 5.39.1
Multiply √138√11 by √11√11.
s=√138√11√11√11
Step 5.39.2
Raise √11 to the power of 1.
s=√138√11√11√11
Step 5.39.3
Raise √11 to the power of 1.
s=√138√11√11√11
Step 5.39.4
Use the power rule aman=am+n to combine exponents.
s=√138√11√111+1
Step 5.39.5
Add 1 and 1.
s=√138√11√112
Step 5.39.6
Rewrite √112 as 11.
Step 5.39.6.1
Use n√ax=axn to rewrite √11 as 1112.
s=√138√11(1112)2
Step 5.39.6.2
Apply the power rule and multiply exponents, (am)n=amn.
s=√138√111112⋅2
Step 5.39.6.3
Combine 12 and 2.
s=√138√111122
Step 5.39.6.4
Cancel the common factor of 2.
Step 5.39.6.4.1
Cancel the common factor.
s=√138√111122
Step 5.39.6.4.2
Rewrite the expression.
s=√138√1111
s=√138√1111
Step 5.39.6.5
Evaluate the exponent.
s=√138√1111
s=√138√1111
s=√138√1111
Step 5.40
Simplify the numerator.
Step 5.40.1
Combine using the product rule for radicals.
s=√138⋅1111
Step 5.40.2
Multiply 138 by 11.
s=√151811
s=√151811
s=√151811
Step 6
The standard deviation should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
3.5