Finite Math Examples

Find the Variance 0 , 10 , -10 , 20 , -20
00 , 10 , -10 , 20 , -20
Step 1
The mean of a set of numbers is the sum divided by the number of terms.
x=0+10-10+20-205
Step 2
Cancel the common factor of 0+10-10+20-20 and 5.
Tap for more steps...
Step 2.1
Factor 5 out of 0.
x=50+10-10+20-205
Step 2.2
Factor 5 out of 10.
x=50+52-10+20-205
Step 2.3
Factor 5 out of 50+52.
x=5(0+2)-10+20-205
Step 2.4
Factor 5 out of -10.
x=5(0+2)+5-2+20-205
Step 2.5
Factor 5 out of 5(0+2)+5(-2).
x=5(0+2-2)+20-205
Step 2.6
Factor 5 out of 20.
x=5(0+2-2)+54-205
Step 2.7
Factor 5 out of 5(0+2-2)+5(4).
x=5(0+2-2+4)-205
Step 2.8
Factor 5 out of -20.
x=5(0+2-2+4)+5-45
Step 2.9
Factor 5 out of 5(0+2-2+4)+5(-4).
x=5(0+2-2+4-4)5
Step 2.10
Cancel the common factors.
Tap for more steps...
Step 2.10.1
Factor 5 out of 5.
x=5(0+2-2+4-4)5(1)
Step 2.10.2
Cancel the common factor.
x=5(0+2-2+4-4)51
Step 2.10.3
Rewrite the expression.
x=0+2-2+4-41
Step 2.10.4
Divide 0+2-2+4-4 by 1.
x=0+2-2+4-4
x=0+2-2+4-4
x=0+2-2+4-4
Step 3
Simplify by adding and subtracting.
Tap for more steps...
Step 3.1
Add 0 and 2.
x=2-2+4-4
Step 3.2
Subtract 2 from 2.
x=0+4-4
Step 3.3
Add 0 and 4.
x=4-4
Step 3.4
Subtract 4 from 4.
x=0
x=0
Step 4
Set up the formula for variance. The variance of a set of values is a measure of the spread of its values.
s2=ni=1(xi-xavg)2n-1
Step 5
Set up the formula for variance for this set of numbers.
s=(0-0)2+(10-0)2+(-10-0)2+(20-0)2+(-20-0)25-1
Step 6
Simplify the result.
Tap for more steps...
Step 6.1
Simplify the numerator.
Tap for more steps...
Step 6.1.1
Subtract 0 from 0.
s=02+(10-0)2+(-10-0)2+(20-0)2+(-20-0)25-1
Step 6.1.2
Raising 0 to any positive power yields 0.
s=0+(10-0)2+(-10-0)2+(20-0)2+(-20-0)25-1
Step 6.1.3
Subtract 0 from 10.
s=0+102+(-10-0)2+(20-0)2+(-20-0)25-1
Step 6.1.4
Raise 10 to the power of 2.
s=0+100+(-10-0)2+(20-0)2+(-20-0)25-1
Step 6.1.5
Subtract 0 from -10.
s=0+100+(-10)2+(20-0)2+(-20-0)25-1
Step 6.1.6
Raise -10 to the power of 2.
s=0+100+100+(20-0)2+(-20-0)25-1
Step 6.1.7
Subtract 0 from 20.
s=0+100+100+202+(-20-0)25-1
Step 6.1.8
Raise 20 to the power of 2.
s=0+100+100+400+(-20-0)25-1
Step 6.1.9
Subtract 0 from -20.
s=0+100+100+400+(-20)25-1
Step 6.1.10
Raise -20 to the power of 2.
s=0+100+100+400+4005-1
Step 6.1.11
Add 0 and 100.
s=100+100+400+4005-1
Step 6.1.12
Add 100 and 100.
s=200+400+4005-1
Step 6.1.13
Add 200 and 400.
s=600+4005-1
Step 6.1.14
Add 600 and 400.
s=10005-1
s=10005-1
Step 6.2
Simplify the expression.
Tap for more steps...
Step 6.2.1
Subtract 1 from 5.
s=10004
Step 6.2.2
Divide 1000 by 4.
s=250
s=250
s=250
Step 7
Approximate the result.
s2250
 [x2  12  π  xdx ]