Finite Math Examples

Find the Standard Deviation table[[x,P(x)],[0,0/15],[1,1/15],[2,2/15],[3,3/15],[4,4/15],[5,5/15]]
xP(x)001511152215331544155515xP(x)001511152215331544155515
Step 1
Prove that the given table satisfies the two properties needed for a probability distribution.
Tap for more steps...
Step 1.1
A discrete random variable x takes a set of separate values (such as 0, 1, 2...). Its probability distribution assigns a probability P(x) to each possible value x. For each x, the probability P(x) falls between 0 and 1 inclusive and the sum of the probabilities for all the possible x values equals to 1.
1. For each x, 0P(x)1.
2. P(x0)+P(x1)+P(x2)++P(xn)=1.
Step 1.2
015 is between 0 and 1 inclusive, which meets the first property of the probability distribution.
015 is between 0 and 1 inclusive
Step 1.3
115 is between 0 and 1 inclusive, which meets the first property of the probability distribution.
115 is between 0 and 1 inclusive
Step 1.4
215 is between 0 and 1 inclusive, which meets the first property of the probability distribution.
215 is between 0 and 1 inclusive
Step 1.5
315 is between 0 and 1 inclusive, which meets the first property of the probability distribution.
315 is between 0 and 1 inclusive
Step 1.6
415 is between 0 and 1 inclusive, which meets the first property of the probability distribution.
415 is between 0 and 1 inclusive
Step 1.7
515 is between 0 and 1 inclusive, which meets the first property of the probability distribution.
515 is between 0 and 1 inclusive
Step 1.8
For each x, the probability P(x) falls between 0 and 1 inclusive, which meets the first property of the probability distribution.
0P(x)1 for all x values
Step 1.9
Find the sum of the probabilities for all the possible x values.
015+115+215+315+415+515
Step 1.10
The sum of the probabilities for all the possible x values is 015+115+215+315+415+515=1.
Tap for more steps...
Step 1.10.1
Combine the numerators over the common denominator.
1+2+3+4+515
Step 1.10.2
Simplify the expression.
Tap for more steps...
Step 1.10.2.1
Add 1 and 2.
3+3+4+515
Step 1.10.2.2
Add 3 and 3.
6+4+515
Step 1.10.2.3
Add 6 and 4.
10+515
Step 1.10.2.4
Add 10 and 5.
1515
Step 1.10.2.5
Divide 15 by 15.
1
1
1
Step 1.11
For each x, the probability of P(x) falls between 0 and 1 inclusive. In addition, the sum of the probabilities for all the possible x equals 1, which means that the table satisfies the two properties of a probability distribution.
The table satisfies the two properties of a probability distribution:
Property 1: 0P(x)1 for all x values
Property 2: 015+115+215+315+415+515=1
The table satisfies the two properties of a probability distribution:
Property 1: 0P(x)1 for all x values
Property 2: 015+115+215+315+415+515=1
Step 2
The expectation mean of a distribution is the value expected if trials of the distribution could continue indefinitely. This is equal to each value multiplied by its discrete probability.
0015+1115+2215+3315+4415+5515
Step 3
Simplify each term.
Tap for more steps...
Step 3.1
Divide 0 by 15.
00+1115+2215+3315+4415+5515
Step 3.2
Multiply 0 by 0.
0+1115+2215+3315+4415+5515
Step 3.3
Multiply 115 by 1.
0+115+2215+3315+4415+5515
Step 3.4
Multiply 2(215).
Tap for more steps...
Step 3.4.1
Combine 2 and 215.
0+115+2215+3315+4415+5515
Step 3.4.2
Multiply 2 by 2.
0+115+415+3315+4415+5515
0+115+415+3315+4415+5515
Step 3.5
Cancel the common factor of 3.
Tap for more steps...
Step 3.5.1
Factor 3 out of 15.
0+115+415+333(5)+4415+5515
Step 3.5.2
Cancel the common factor.
0+115+415+3335+4415+5515
Step 3.5.3
Rewrite the expression.
0+115+415+35+4415+5515
0+115+415+35+4415+5515
Step 3.6
Multiply 4(415).
Tap for more steps...
Step 3.6.1
Combine 4 and 415.
0+115+415+35+4415+5515
Step 3.6.2
Multiply 4 by 4.
0+115+415+35+1615+5515
0+115+415+35+1615+5515
Step 3.7
Cancel the common factor of 5.
Tap for more steps...
Step 3.7.1
Factor 5 out of 15.
0+115+415+35+1615+555(3)
Step 3.7.2
Cancel the common factor.
0+115+415+35+1615+5553
Step 3.7.3
Rewrite the expression.
0+115+415+35+1615+53
0+115+415+35+1615+53
0+115+415+35+1615+53
Step 4
Combine fractions.
Tap for more steps...
Step 4.1
Combine the numerators over the common denominator.
1+4+1615+35+53
Step 4.2
Simplify by adding numbers.
Tap for more steps...
Step 4.2.1
Add 1 and 4.
5+1615+35+53
Step 4.2.2
Add 5 and 16.
2115+35+53
2115+35+53
2115+35+53
Step 5
Find the common denominator.
Tap for more steps...
Step 5.1
Multiply 35 by 33.
2115+3533+53
Step 5.2
Multiply 35 by 33.
2115+3353+53
Step 5.3
Multiply 53 by 55.
2115+3353+5355
Step 5.4
Multiply 53 by 55.
2115+3353+5535
Step 5.5
Reorder the factors of 53.
2115+3335+5535
Step 5.6
Multiply 3 by 5.
2115+3315+5535
Step 5.7
Multiply 3 by 5.
2115+3315+5515
2115+3315+5515
Step 6
Combine the numerators over the common denominator.
21+33+5515
Step 7
Simplify each term.
Tap for more steps...
Step 7.1
Multiply 3 by 3.
21+9+5515
Step 7.2
Multiply 5 by 5.
21+9+2515
21+9+2515
Step 8
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 8.1
Add 21 and 9.
30+2515
Step 8.2
Add 30 and 25.
5515
Step 8.3
Cancel the common factor of 55 and 15.
Tap for more steps...
Step 8.3.1
Factor 5 out of 55.
5(11)15
Step 8.3.2
Cancel the common factors.
Tap for more steps...
Step 8.3.2.1
Factor 5 out of 15.
51153
Step 8.3.2.2
Cancel the common factor.
51153
Step 8.3.2.3
Rewrite the expression.
113
113
113
113
Step 9
The standard deviation of a distribution is a measure of the dispersion and is equal to the square root of the variance.
s=(x-u)2(P(x))
Step 10
Fill in the known values.
(0-(113))2015+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11
Simplify the expression.
Tap for more steps...
Step 11.1
Subtract 113 from 0.
(-113)2015+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.2
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 11.2.1
Apply the product rule to -113.
(-1)2(113)2015+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.2.2
Apply the product rule to 113.
(-1)211232015+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
(-1)211232015+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.3
Simplify the expression.
Tap for more steps...
Step 11.3.1
Raise -1 to the power of 2.
111232015+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.3.2
Multiply 11232 by 1.
11232015+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
11232015+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.4
Combine.
11203215+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.5
Cancel the common factor of 0 and 15.
Tap for more steps...
Step 11.5.1
Factor 15 out of 1120.
15(1120)3215+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.5.2
Cancel the common factors.
Tap for more steps...
Step 11.5.2.1
Factor 15 out of 3215.
15(1120)1532+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.5.2.2
Cancel the common factor.
15(1120)1532+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.5.2.3
Rewrite the expression.
112032+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
112032+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
112032+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.6
Simplify the expression.
Tap for more steps...
Step 11.6.1
Multiply 112 by 0.
032+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.6.2
Raise 3 to the power of 2.
09+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.6.3
Divide 0 by 9.
0+(1-(113))2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.6.4
Write 1 as a fraction with a common denominator.
0+(33-113)2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.6.5
Combine the numerators over the common denominator.
0+(3-113)2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.6.6
Subtract 11 from 3.
0+(-83)2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.6.7
Move the negative in front of the fraction.
0+(-83)2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
0+(-83)2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.7
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 11.7.1
Apply the product rule to -83.
0+(-1)2(83)2115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.7.2
Apply the product rule to 83.
0+(-1)28232115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
0+(-1)28232115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.8
Simplify the expression.
Tap for more steps...
Step 11.8.1
Raise -1 to the power of 2.
0+18232115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.8.2
Multiply 8232 by 1.
0+8232115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
0+8232115+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.9
Combine.
0+8213215+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.10
Simplify the expression.
Tap for more steps...
Step 11.10.1
Multiply 82 by 1.
0+823215+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.10.2
Raise 3 to the power of 2.
0+82915+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.10.3
Raise 8 to the power of 2.
0+64915+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.10.4
Multiply 9 by 15.
0+64135+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
0+64135+(2-(113))2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.11
To write 2 as a fraction with a common denominator, multiply by 33.
0+64135+(233-113)2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.12
Combine 2 and 33.
0+64135+(233-113)2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.13
Combine the numerators over the common denominator.
0+64135+(23-113)2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.14
Simplify the numerator.
Tap for more steps...
Step 11.14.1
Multiply 2 by 3.
0+64135+(6-113)2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.14.2
Subtract 11 from 6.
0+64135+(-53)2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
0+64135+(-53)2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.15
Move the negative in front of the fraction.
0+64135+(-53)2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.16
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 11.16.1
Apply the product rule to -53.
0+64135+(-1)2(53)2215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.16.2
Apply the product rule to 53.
0+64135+(-1)25232215+(3-(113))2315+(4-(113))2415+(5-(113))2515
0+64135+(-1)25232215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.17
Simplify the expression.
Tap for more steps...
Step 11.17.1
Raise -1 to the power of 2.
0+64135+15232215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.17.2
Multiply 5232 by 1.
0+64135+5232215+(3-(113))2315+(4-(113))2415+(5-(113))2515
0+64135+5232215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.18
Combine.
0+64135+5223215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.19
Simplify the expression.
Tap for more steps...
Step 11.19.1
Raise 5 to the power of 2.
0+64135+2523215+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.19.2
Raise 3 to the power of 2.
0+64135+252915+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.19.3
Multiply 25 by 2.
0+64135+50915+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.19.4
Multiply 9 by 15.
0+64135+50135+(3-(113))2315+(4-(113))2415+(5-(113))2515
0+64135+50135+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.20
Cancel the common factor of 50 and 135.
Tap for more steps...
Step 11.20.1
Factor 5 out of 50.
0+64135+5(10)135+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.20.2
Cancel the common factors.
Tap for more steps...
Step 11.20.2.1
Factor 5 out of 135.
0+64135+510527+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.20.2.2
Cancel the common factor.
0+64135+510527+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.20.2.3
Rewrite the expression.
0+64135+1027+(3-(113))2315+(4-(113))2415+(5-(113))2515
0+64135+1027+(3-(113))2315+(4-(113))2415+(5-(113))2515
0+64135+1027+(3-(113))2315+(4-(113))2415+(5-(113))2515
Step 11.21
To write 3 as a fraction with a common denominator, multiply by 33.
0+64135+1027+(333-113)2315+(4-(113))2415+(5-(113))2515
Step 11.22
Combine 3 and 33.
0+64135+1027+(333-113)2315+(4-(113))2415+(5-(113))2515
Step 11.23
Combine the numerators over the common denominator.
0+64135+1027+(33-113)2315+(4-(113))2415+(5-(113))2515
Step 11.24
Simplify the numerator.
Tap for more steps...
Step 11.24.1
Multiply 3 by 3.
0+64135+1027+(9-113)2315+(4-(113))2415+(5-(113))2515
Step 11.24.2
Subtract 11 from 9.
0+64135+1027+(-23)2315+(4-(113))2415+(5-(113))2515
0+64135+1027+(-23)2315+(4-(113))2415+(5-(113))2515
Step 11.25
Move the negative in front of the fraction.
0+64135+1027+(-23)2315+(4-(113))2415+(5-(113))2515
Step 11.26
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 11.26.1
Apply the product rule to -23.
0+64135+1027+(-1)2(23)2315+(4-(113))2415+(5-(113))2515
Step 11.26.2
Apply the product rule to 23.
0+64135+1027+(-1)22232315+(4-(113))2415+(5-(113))2515
0+64135+1027+(-1)22232315+(4-(113))2415+(5-(113))2515
Step 11.27
Simplify the expression.
Tap for more steps...
Step 11.27.1
Raise -1 to the power of 2.
0+64135+1027+12232315+(4-(113))2415+(5-(113))2515
Step 11.27.2
Multiply 2232 by 1.
0+64135+1027+2232315+(4-(113))2415+(5-(113))2515
0+64135+1027+2232315+(4-(113))2415+(5-(113))2515
Step 11.28
Combine.
0+64135+1027+2233215+(4-(113))2415+(5-(113))2515
Step 11.29
Cancel the common factor of 3 and 32.
Tap for more steps...
Step 11.29.1
Factor 3 out of 223.
0+64135+1027+3223215+(4-(113))2415+(5-(113))2515
Step 11.29.2
Cancel the common factors.
Tap for more steps...
Step 11.29.2.1
Factor 3 out of 3215.
0+64135+1027+3223(315)+(4-(113))2415+(5-(113))2515
Step 11.29.2.2
Cancel the common factor.
0+64135+1027+3223(315)+(4-(113))2415+(5-(113))2515
Step 11.29.2.3
Rewrite the expression.
0+64135+1027+22315+(4-(113))2415+(5-(113))2515
0+64135+1027+22315+(4-(113))2415+(5-(113))2515
0+64135+1027+22315+(4-(113))2415+(5-(113))2515
Step 11.30
Simplify the expression.
Tap for more steps...
Step 11.30.1
Raise 2 to the power of 2.
0+64135+1027+4315+(4-(113))2415+(5-(113))2515
Step 11.30.2
Multiply 3 by 15.
0+64135+1027+445+(4-(113))2415+(5-(113))2515
0+64135+1027+445+(4-(113))2415+(5-(113))2515
Step 11.31
To write 4 as a fraction with a common denominator, multiply by 33.
0+64135+1027+445+(433-113)2415+(5-(113))2515
Step 11.32
Combine 4 and 33.
0+64135+1027+445+(433-113)2415+(5-(113))2515
Step 11.33
Combine the numerators over the common denominator.
0+64135+1027+445+(43-113)2415+(5-(113))2515
Step 11.34
Simplify the numerator.
Tap for more steps...
Step 11.34.1
Multiply 4 by 3.
0+64135+1027+445+(12-113)2415+(5-(113))2515
Step 11.34.2
Subtract 11 from 12.
0+64135+1027+445+(13)2415+(5-(113))2515
0+64135+1027+445+(13)2415+(5-(113))2515
Step 11.35
Combine fractions.
Tap for more steps...
Step 11.35.1
Apply the product rule to 13.
0+64135+1027+445+1232415+(5-(113))2515
Step 11.35.2
Combine.
0+64135+1027+445+1243215+(5-(113))2515
0+64135+1027+445+1243215+(5-(113))2515
Step 11.36
Simplify the numerator.
Tap for more steps...
Step 11.36.1
One to any power is one.
0+64135+1027+445+143215+(5-(113))2515
Step 11.36.2
Multiply 4 by 1.
0+64135+1027+445+43215+(5-(113))2515
0+64135+1027+445+43215+(5-(113))2515
Step 11.37
Simplify the expression.
Tap for more steps...
Step 11.37.1
Raise 3 to the power of 2.
0+64135+1027+445+4915+(5-(113))2515
Step 11.37.2
Multiply 9 by 15.
0+64135+1027+445+4135+(5-(113))2515
0+64135+1027+445+4135+(5-(113))2515
Step 11.38
To write 5 as a fraction with a common denominator, multiply by 33.
0+64135+1027+445+4135+(533-113)2515
Step 11.39
Combine 5 and 33.
0+64135+1027+445+4135+(533-113)2515
Step 11.40
Combine the numerators over the common denominator.
0+64135+1027+445+4135+(53-113)2515
Step 11.41
Simplify the numerator.
Tap for more steps...
Step 11.41.1
Multiply 5 by 3.
0+64135+1027+445+4135+(15-113)2515
Step 11.41.2
Subtract 11 from 15.
0+64135+1027+445+4135+(43)2515
0+64135+1027+445+4135+(43)2515
Step 11.42
Apply the product rule to 43.
0+64135+1027+445+4135+4232515
Step 11.43
Combine.
0+64135+1027+445+4135+4253215
Step 11.44
Cancel the common factor of 5 and 15.
Tap for more steps...
Step 11.44.1
Factor 5 out of 425.
0+64135+1027+445+4135+5423215
Step 11.44.2
Cancel the common factors.
Tap for more steps...
Step 11.44.2.1
Factor 5 out of 3215.
0+64135+1027+445+4135+5425(323)
Step 11.44.2.2
Cancel the common factor.
0+64135+1027+445+4135+5425(323)
Step 11.44.2.3
Rewrite the expression.
0+64135+1027+445+4135+42323
0+64135+1027+445+4135+42323
0+64135+1027+445+4135+42323
Step 11.45
Multiply 32 by 3 by adding the exponents.
Tap for more steps...
Step 11.45.1
Multiply 32 by 3.
Tap for more steps...
Step 11.45.1.1
Raise 3 to the power of 1.
0+64135+1027+445+4135+423231
Step 11.45.1.2
Use the power rule aman=am+n to combine exponents.
0+64135+1027+445+4135+4232+1
0+64135+1027+445+4135+4232+1
Step 11.45.2
Add 2 and 1.
0+64135+1027+445+4135+4233
0+64135+1027+445+4135+4233
Step 11.46
Raise 4 to the power of 2.
0+64135+1027+445+4135+1633
Step 11.47
Raise 3 to the power of 3.
0+64135+1027+445+4135+1627
Step 11.48
Add 0 and 64135.
64135+1027+445+4135+1627
Step 11.49
To write 1027 as a fraction with a common denominator, multiply by 55.
64135+102755+445+4135+1627
Step 11.50
Write each expression with a common denominator of 135, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 11.50.1
Multiply 1027 by 55.
64135+105275+445+4135+1627
Step 11.50.2
Multiply 27 by 5.
64135+105135+445+4135+1627
64135+105135+445+4135+1627
Step 11.51
Combine the numerators over the common denominator.
64+105135+445+4135+1627
Step 11.52
Simplify the numerator.
Tap for more steps...
Step 11.52.1
Multiply 10 by 5.
64+50135+445+4135+1627
Step 11.52.2
Add 64 and 50.
114135+445+4135+1627
114135+445+4135+1627
Step 11.53
To write 445 as a fraction with a common denominator, multiply by 33.
114135+44533+4135+1627
Step 11.54
Write each expression with a common denominator of 135, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 11.54.1
Multiply 445 by 33.
114135+43453+4135+1627
Step 11.54.2
Multiply 45 by 3.
114135+43135+4135+1627
114135+43135+4135+1627
Step 11.55
Combine the numerators over the common denominator.
114+43135+4135+1627
Step 11.56
Simplify the numerator.
Tap for more steps...
Step 11.56.1
Multiply 4 by 3.
114+12135+4135+1627
Step 11.56.2
Add 114 and 12.
126135+4135+1627
126135+4135+1627
Step 11.57
Combine the numerators over the common denominator.
126+4135+1627
Step 11.58
Add 126 and 4.
130135+1627
Step 11.59
To write 1627 as a fraction with a common denominator, multiply by 55.
130135+162755
Step 11.60
Write each expression with a common denominator of 135, by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 11.60.1
Multiply 1627 by 55.
130135+165275
Step 11.60.2
Multiply 27 by 5.
130135+165135
130135+165135
Step 11.61
Combine the numerators over the common denominator.
130+165135
Step 11.62
Simplify the numerator.
Tap for more steps...
Step 11.62.1
Multiply 16 by 5.
130+80135
Step 11.62.2
Add 130 and 80.
210135
210135
Step 11.63
Cancel the common factor of 210 and 135.
Tap for more steps...
Step 11.63.1
Factor 15 out of 210.
15(14)135
Step 11.63.2
Cancel the common factors.
Tap for more steps...
Step 11.63.2.1
Factor 15 out of 135.
1514159
Step 11.63.2.2
Cancel the common factor.
1514159
Step 11.63.2.3
Rewrite the expression.
149
149
149
Step 11.64
Rewrite 149 as 149.
149
Step 11.65
Simplify the denominator.
Tap for more steps...
Step 11.65.1
Rewrite 9 as 32.
1432
Step 11.65.2
Pull terms out from under the radical, assuming positive real numbers.
143
143
143
Step 12
The result can be shown in multiple forms.
Exact Form:
143
Decimal Form:
1.24721912
 [x2  12  π  xdx ]