Enter a problem...
Finite Math Examples
xP(x)001511152215331544155515xP(x)001511152215331544155515
Step 1
Step 1.1
A discrete random variable x takes a set of separate values (such as 0, 1, 2...). Its probability distribution assigns a probability P(x) to each possible value x. For each x, the probability P(x) falls between 0 and 1 inclusive and the sum of the probabilities for all the possible x values equals to 1.
1. For each x, 0≤P(x)≤1.
2. P(x0)+P(x1)+P(x2)+…+P(xn)=1.
Step 1.2
015 is between 0 and 1 inclusive, which meets the first property of the probability distribution.
015 is between 0 and 1 inclusive
Step 1.3
115 is between 0 and 1 inclusive, which meets the first property of the probability distribution.
115 is between 0 and 1 inclusive
Step 1.4
215 is between 0 and 1 inclusive, which meets the first property of the probability distribution.
215 is between 0 and 1 inclusive
Step 1.5
315 is between 0 and 1 inclusive, which meets the first property of the probability distribution.
315 is between 0 and 1 inclusive
Step 1.6
415 is between 0 and 1 inclusive, which meets the first property of the probability distribution.
415 is between 0 and 1 inclusive
Step 1.7
515 is between 0 and 1 inclusive, which meets the first property of the probability distribution.
515 is between 0 and 1 inclusive
Step 1.8
For each x, the probability P(x) falls between 0 and 1 inclusive, which meets the first property of the probability distribution.
0≤P(x)≤1 for all x values
Step 1.9
Find the sum of the probabilities for all the possible x values.
015+115+215+315+415+515
Step 1.10
The sum of the probabilities for all the possible x values is 015+115+215+315+415+515=1.
Step 1.10.1
Combine the numerators over the common denominator.
1+2+3+4+515
Step 1.10.2
Simplify the expression.
Step 1.10.2.1
Add 1 and 2.
3+3+4+515
Step 1.10.2.2
Add 3 and 3.
6+4+515
Step 1.10.2.3
Add 6 and 4.
10+515
Step 1.10.2.4
Add 10 and 5.
1515
Step 1.10.2.5
Divide 15 by 15.
1
1
1
Step 1.11
For each x, the probability of P(x) falls between 0 and 1 inclusive. In addition, the sum of the probabilities for all the possible x equals 1, which means that the table satisfies the two properties of a probability distribution.
The table satisfies the two properties of a probability distribution:
Property 1: 0≤P(x)≤1 for all x values
Property 2: 015+115+215+315+415+515=1
The table satisfies the two properties of a probability distribution:
Property 1: 0≤P(x)≤1 for all x values
Property 2: 015+115+215+315+415+515=1
Step 2
The expectation mean of a distribution is the value expected if trials of the distribution could continue indefinitely. This is equal to each value multiplied by its discrete probability.
0⋅015+1⋅115+2⋅215+3⋅315+4⋅415+5⋅515
Step 3
Step 3.1
Divide 0 by 15.
0⋅0+1⋅115+2⋅215+3⋅315+4⋅415+5⋅515
Step 3.2
Multiply 0 by 0.
0+1⋅115+2⋅215+3⋅315+4⋅415+5⋅515
Step 3.3
Multiply 115 by 1.
0+115+2⋅215+3⋅315+4⋅415+5⋅515
Step 3.4
Multiply 2(215).
Step 3.4.1
Combine 2 and 215.
0+115+2⋅215+3⋅315+4⋅415+5⋅515
Step 3.4.2
Multiply 2 by 2.
0+115+415+3⋅315+4⋅415+5⋅515
0+115+415+3⋅315+4⋅415+5⋅515
Step 3.5
Cancel the common factor of 3.
Step 3.5.1
Factor 3 out of 15.
0+115+415+3⋅33(5)+4⋅415+5⋅515
Step 3.5.2
Cancel the common factor.
0+115+415+3⋅33⋅5+4⋅415+5⋅515
Step 3.5.3
Rewrite the expression.
0+115+415+35+4⋅415+5⋅515
0+115+415+35+4⋅415+5⋅515
Step 3.6
Multiply 4(415).
Step 3.6.1
Combine 4 and 415.
0+115+415+35+4⋅415+5⋅515
Step 3.6.2
Multiply 4 by 4.
0+115+415+35+1615+5⋅515
0+115+415+35+1615+5⋅515
Step 3.7
Cancel the common factor of 5.
Step 3.7.1
Factor 5 out of 15.
0+115+415+35+1615+5⋅55(3)
Step 3.7.2
Cancel the common factor.
0+115+415+35+1615+5⋅55⋅3
Step 3.7.3
Rewrite the expression.
0+115+415+35+1615+53
0+115+415+35+1615+53
0+115+415+35+1615+53
Step 4
Step 4.1
Combine the numerators over the common denominator.
1+4+1615+35+53
Step 4.2
Simplify by adding numbers.
Step 4.2.1
Add 1 and 4.
5+1615+35+53
Step 4.2.2
Add 5 and 16.
2115+35+53
2115+35+53
2115+35+53
Step 5
Step 5.1
Multiply 35 by 33.
2115+35⋅33+53
Step 5.2
Multiply 35 by 33.
2115+3⋅35⋅3+53
Step 5.3
Multiply 53 by 55.
2115+3⋅35⋅3+53⋅55
Step 5.4
Multiply 53 by 55.
2115+3⋅35⋅3+5⋅53⋅5
Step 5.5
Reorder the factors of 5⋅3.
2115+3⋅33⋅5+5⋅53⋅5
Step 5.6
Multiply 3 by 5.
2115+3⋅315+5⋅53⋅5
Step 5.7
Multiply 3 by 5.
2115+3⋅315+5⋅515
2115+3⋅315+5⋅515
Step 6
Combine the numerators over the common denominator.
21+3⋅3+5⋅515
Step 7
Step 7.1
Multiply 3 by 3.
21+9+5⋅515
Step 7.2
Multiply 5 by 5.
21+9+2515
21+9+2515
Step 8
Step 8.1
Add 21 and 9.
30+2515
Step 8.2
Add 30 and 25.
5515
Step 8.3
Cancel the common factor of 55 and 15.
Step 8.3.1
Factor 5 out of 55.
5(11)15
Step 8.3.2
Cancel the common factors.
Step 8.3.2.1
Factor 5 out of 15.
5⋅115⋅3
Step 8.3.2.2
Cancel the common factor.
5⋅115⋅3
Step 8.3.2.3
Rewrite the expression.
113
113
113
113
Step 9
The standard deviation of a distribution is a measure of the dispersion and is equal to the square root of the variance.
s=√∑(x-u)2⋅(P(x))
Step 10
Fill in the known values.
√(0-(113))2⋅015+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11
Step 11.1
Subtract 113 from 0.
√(-113)2⋅015+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.2
Use the power rule (ab)n=anbn to distribute the exponent.
Step 11.2.1
Apply the product rule to -113.
√(-1)2(113)2⋅015+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.2.2
Apply the product rule to 113.
√(-1)211232⋅015+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√(-1)211232⋅015+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.3
Simplify the expression.
Step 11.3.1
Raise -1 to the power of 2.
√111232⋅015+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.3.2
Multiply 11232 by 1.
√11232⋅015+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√11232⋅015+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.4
Combine.
√112⋅032⋅15+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.5
Cancel the common factor of 0 and 15.
Step 11.5.1
Factor 15 out of 112⋅0.
√15(112⋅0)32⋅15+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.5.2
Cancel the common factors.
Step 11.5.2.1
Factor 15 out of 32⋅15.
√15(112⋅0)15⋅32+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.5.2.2
Cancel the common factor.
√15(112⋅0)15⋅32+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.5.2.3
Rewrite the expression.
√112⋅032+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√112⋅032+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√112⋅032+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.6
Simplify the expression.
Step 11.6.1
Multiply 112 by 0.
√032+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.6.2
Raise 3 to the power of 2.
√09+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.6.3
Divide 0 by 9.
√0+(1-(113))2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.6.4
Write 1 as a fraction with a common denominator.
√0+(33-113)2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.6.5
Combine the numerators over the common denominator.
√0+(3-113)2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.6.6
Subtract 11 from 3.
√0+(-83)2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.6.7
Move the negative in front of the fraction.
√0+(-83)2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√0+(-83)2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.7
Use the power rule (ab)n=anbn to distribute the exponent.
Step 11.7.1
Apply the product rule to -83.
√0+(-1)2(83)2⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.7.2
Apply the product rule to 83.
√0+(-1)28232⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√0+(-1)28232⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.8
Simplify the expression.
Step 11.8.1
Raise -1 to the power of 2.
√0+18232⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.8.2
Multiply 8232 by 1.
√0+8232⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√0+8232⋅115+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.9
Combine.
√0+82⋅132⋅15+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.10
Simplify the expression.
Step 11.10.1
Multiply 82 by 1.
√0+8232⋅15+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.10.2
Raise 3 to the power of 2.
√0+829⋅15+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.10.3
Raise 8 to the power of 2.
√0+649⋅15+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.10.4
Multiply 9 by 15.
√0+64135+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√0+64135+(2-(113))2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.11
To write 2 as a fraction with a common denominator, multiply by 33.
√0+64135+(2⋅33-113)2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.12
Combine 2 and 33.
√0+64135+(2⋅33-113)2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.13
Combine the numerators over the common denominator.
√0+64135+(2⋅3-113)2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.14
Simplify the numerator.
Step 11.14.1
Multiply 2 by 3.
√0+64135+(6-113)2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.14.2
Subtract 11 from 6.
√0+64135+(-53)2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√0+64135+(-53)2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.15
Move the negative in front of the fraction.
√0+64135+(-53)2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.16
Use the power rule (ab)n=anbn to distribute the exponent.
Step 11.16.1
Apply the product rule to -53.
√0+64135+(-1)2(53)2⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.16.2
Apply the product rule to 53.
√0+64135+(-1)25232⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√0+64135+(-1)25232⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.17
Simplify the expression.
Step 11.17.1
Raise -1 to the power of 2.
√0+64135+15232⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.17.2
Multiply 5232 by 1.
√0+64135+5232⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√0+64135+5232⋅215+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.18
Combine.
√0+64135+52⋅232⋅15+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.19
Simplify the expression.
Step 11.19.1
Raise 5 to the power of 2.
√0+64135+25⋅232⋅15+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.19.2
Raise 3 to the power of 2.
√0+64135+25⋅29⋅15+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.19.3
Multiply 25 by 2.
√0+64135+509⋅15+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.19.4
Multiply 9 by 15.
√0+64135+50135+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√0+64135+50135+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.20
Cancel the common factor of 50 and 135.
Step 11.20.1
Factor 5 out of 50.
√0+64135+5(10)135+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.20.2
Cancel the common factors.
Step 11.20.2.1
Factor 5 out of 135.
√0+64135+5⋅105⋅27+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.20.2.2
Cancel the common factor.
√0+64135+5⋅105⋅27+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.20.2.3
Rewrite the expression.
√0+64135+1027+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√0+64135+1027+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√0+64135+1027+(3-(113))2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.21
To write 3 as a fraction with a common denominator, multiply by 33.
√0+64135+1027+(3⋅33-113)2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.22
Combine 3 and 33.
√0+64135+1027+(3⋅33-113)2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.23
Combine the numerators over the common denominator.
√0+64135+1027+(3⋅3-113)2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.24
Simplify the numerator.
Step 11.24.1
Multiply 3 by 3.
√0+64135+1027+(9-113)2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.24.2
Subtract 11 from 9.
√0+64135+1027+(-23)2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√0+64135+1027+(-23)2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.25
Move the negative in front of the fraction.
√0+64135+1027+(-23)2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.26
Use the power rule (ab)n=anbn to distribute the exponent.
Step 11.26.1
Apply the product rule to -23.
√0+64135+1027+(-1)2(23)2⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.26.2
Apply the product rule to 23.
√0+64135+1027+(-1)22232⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√0+64135+1027+(-1)22232⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.27
Simplify the expression.
Step 11.27.1
Raise -1 to the power of 2.
√0+64135+1027+12232⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.27.2
Multiply 2232 by 1.
√0+64135+1027+2232⋅315+(4-(113))2⋅415+(5-(113))2⋅515
√0+64135+1027+2232⋅315+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.28
Combine.
√0+64135+1027+22⋅332⋅15+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.29
Cancel the common factor of 3 and 32.
Step 11.29.1
Factor 3 out of 22⋅3.
√0+64135+1027+3⋅2232⋅15+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.29.2
Cancel the common factors.
Step 11.29.2.1
Factor 3 out of 32⋅15.
√0+64135+1027+3⋅223(3⋅15)+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.29.2.2
Cancel the common factor.
√0+64135+1027+3⋅223(3⋅15)+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.29.2.3
Rewrite the expression.
√0+64135+1027+223⋅15+(4-(113))2⋅415+(5-(113))2⋅515
√0+64135+1027+223⋅15+(4-(113))2⋅415+(5-(113))2⋅515
√0+64135+1027+223⋅15+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.30
Simplify the expression.
Step 11.30.1
Raise 2 to the power of 2.
√0+64135+1027+43⋅15+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.30.2
Multiply 3 by 15.
√0+64135+1027+445+(4-(113))2⋅415+(5-(113))2⋅515
√0+64135+1027+445+(4-(113))2⋅415+(5-(113))2⋅515
Step 11.31
To write 4 as a fraction with a common denominator, multiply by 33.
√0+64135+1027+445+(4⋅33-113)2⋅415+(5-(113))2⋅515
Step 11.32
Combine 4 and 33.
√0+64135+1027+445+(4⋅33-113)2⋅415+(5-(113))2⋅515
Step 11.33
Combine the numerators over the common denominator.
√0+64135+1027+445+(4⋅3-113)2⋅415+(5-(113))2⋅515
Step 11.34
Simplify the numerator.
Step 11.34.1
Multiply 4 by 3.
√0+64135+1027+445+(12-113)2⋅415+(5-(113))2⋅515
Step 11.34.2
Subtract 11 from 12.
√0+64135+1027+445+(13)2⋅415+(5-(113))2⋅515
√0+64135+1027+445+(13)2⋅415+(5-(113))2⋅515
Step 11.35
Combine fractions.
Step 11.35.1
Apply the product rule to 13.
√0+64135+1027+445+1232⋅415+(5-(113))2⋅515
Step 11.35.2
Combine.
√0+64135+1027+445+12⋅432⋅15+(5-(113))2⋅515
√0+64135+1027+445+12⋅432⋅15+(5-(113))2⋅515
Step 11.36
Simplify the numerator.
Step 11.36.1
One to any power is one.
√0+64135+1027+445+1⋅432⋅15+(5-(113))2⋅515
Step 11.36.2
Multiply 4 by 1.
√0+64135+1027+445+432⋅15+(5-(113))2⋅515
√0+64135+1027+445+432⋅15+(5-(113))2⋅515
Step 11.37
Simplify the expression.
Step 11.37.1
Raise 3 to the power of 2.
√0+64135+1027+445+49⋅15+(5-(113))2⋅515
Step 11.37.2
Multiply 9 by 15.
√0+64135+1027+445+4135+(5-(113))2⋅515
√0+64135+1027+445+4135+(5-(113))2⋅515
Step 11.38
To write 5 as a fraction with a common denominator, multiply by 33.
√0+64135+1027+445+4135+(5⋅33-113)2⋅515
Step 11.39
Combine 5 and 33.
√0+64135+1027+445+4135+(5⋅33-113)2⋅515
Step 11.40
Combine the numerators over the common denominator.
√0+64135+1027+445+4135+(5⋅3-113)2⋅515
Step 11.41
Simplify the numerator.
Step 11.41.1
Multiply 5 by 3.
√0+64135+1027+445+4135+(15-113)2⋅515
Step 11.41.2
Subtract 11 from 15.
√0+64135+1027+445+4135+(43)2⋅515
√0+64135+1027+445+4135+(43)2⋅515
Step 11.42
Apply the product rule to 43.
√0+64135+1027+445+4135+4232⋅515
Step 11.43
Combine.
√0+64135+1027+445+4135+42⋅532⋅15
Step 11.44
Cancel the common factor of 5 and 15.
Step 11.44.1
Factor 5 out of 42⋅5.
√0+64135+1027+445+4135+5⋅4232⋅15
Step 11.44.2
Cancel the common factors.
Step 11.44.2.1
Factor 5 out of 32⋅15.
√0+64135+1027+445+4135+5⋅425(32⋅3)
Step 11.44.2.2
Cancel the common factor.
√0+64135+1027+445+4135+5⋅425(32⋅3)
Step 11.44.2.3
Rewrite the expression.
√0+64135+1027+445+4135+4232⋅3
√0+64135+1027+445+4135+4232⋅3
√0+64135+1027+445+4135+4232⋅3
Step 11.45
Multiply 32 by 3 by adding the exponents.
Step 11.45.1
Multiply 32 by 3.
Step 11.45.1.1
Raise 3 to the power of 1.
√0+64135+1027+445+4135+4232⋅31
Step 11.45.1.2
Use the power rule aman=am+n to combine exponents.
√0+64135+1027+445+4135+4232+1
√0+64135+1027+445+4135+4232+1
Step 11.45.2
Add 2 and 1.
√0+64135+1027+445+4135+4233
√0+64135+1027+445+4135+4233
Step 11.46
Raise 4 to the power of 2.
√0+64135+1027+445+4135+1633
Step 11.47
Raise 3 to the power of 3.
√0+64135+1027+445+4135+1627
Step 11.48
Add 0 and 64135.
√64135+1027+445+4135+1627
Step 11.49
To write 1027 as a fraction with a common denominator, multiply by 55.
√64135+1027⋅55+445+4135+1627
Step 11.50
Write each expression with a common denominator of 135, by multiplying each by an appropriate factor of 1.
Step 11.50.1
Multiply 1027 by 55.
√64135+10⋅527⋅5+445+4135+1627
Step 11.50.2
Multiply 27 by 5.
√64135+10⋅5135+445+4135+1627
√64135+10⋅5135+445+4135+1627
Step 11.51
Combine the numerators over the common denominator.
√64+10⋅5135+445+4135+1627
Step 11.52
Simplify the numerator.
Step 11.52.1
Multiply 10 by 5.
√64+50135+445+4135+1627
Step 11.52.2
Add 64 and 50.
√114135+445+4135+1627
√114135+445+4135+1627
Step 11.53
To write 445 as a fraction with a common denominator, multiply by 33.
√114135+445⋅33+4135+1627
Step 11.54
Write each expression with a common denominator of 135, by multiplying each by an appropriate factor of 1.
Step 11.54.1
Multiply 445 by 33.
√114135+4⋅345⋅3+4135+1627
Step 11.54.2
Multiply 45 by 3.
√114135+4⋅3135+4135+1627
√114135+4⋅3135+4135+1627
Step 11.55
Combine the numerators over the common denominator.
√114+4⋅3135+4135+1627
Step 11.56
Simplify the numerator.
Step 11.56.1
Multiply 4 by 3.
√114+12135+4135+1627
Step 11.56.2
Add 114 and 12.
√126135+4135+1627
√126135+4135+1627
Step 11.57
Combine the numerators over the common denominator.
√126+4135+1627
Step 11.58
Add 126 and 4.
√130135+1627
Step 11.59
To write 1627 as a fraction with a common denominator, multiply by 55.
√130135+1627⋅55
Step 11.60
Write each expression with a common denominator of 135, by multiplying each by an appropriate factor of 1.
Step 11.60.1
Multiply 1627 by 55.
√130135+16⋅527⋅5
Step 11.60.2
Multiply 27 by 5.
√130135+16⋅5135
√130135+16⋅5135
Step 11.61
Combine the numerators over the common denominator.
√130+16⋅5135
Step 11.62
Simplify the numerator.
Step 11.62.1
Multiply 16 by 5.
√130+80135
Step 11.62.2
Add 130 and 80.
√210135
√210135
Step 11.63
Cancel the common factor of 210 and 135.
Step 11.63.1
Factor 15 out of 210.
√15(14)135
Step 11.63.2
Cancel the common factors.
Step 11.63.2.1
Factor 15 out of 135.
√15⋅1415⋅9
Step 11.63.2.2
Cancel the common factor.
√15⋅1415⋅9
Step 11.63.2.3
Rewrite the expression.
√149
√149
√149
Step 11.64
Rewrite √149 as √14√9.
√14√9
Step 11.65
Simplify the denominator.
Step 11.65.1
Rewrite 9 as 32.
√14√32
Step 11.65.2
Pull terms out from under the radical, assuming positive real numbers.
√143
√143
√143
Step 12
The result can be shown in multiple forms.
Exact Form:
√143
Decimal Form:
1.24721912…