Finite Math Examples

Find the Variance 3(30) , 5(45) , 7(70) , 9(55) , 11(10)
3(30)3(30) , 5(45)5(45) , 7(70)7(70) , 9(55)9(55) , 11(10)11(10)
Step 1
Multiply 33 by 3030.
x=90,5(45),7(70),9(55),11(10)¯x=90,5(45),7(70),9(55),11(10)
Step 2
Multiply 55 by 4545.
x=90,225,7(70),9(55),11(10)¯x=90,225,7(70),9(55),11(10)
Step 3
Multiply 77 by 7070.
x=90,225,490,9(55),11(10)¯x=90,225,490,9(55),11(10)
Step 4
Multiply 99 by 5555.
x=90,225,490,495,11(10)¯x=90,225,490,495,11(10)
Step 5
Multiply 1111 by 1010.
x=90,225,490,495,110¯x=90,225,490,495,110
Step 6
The mean of a set of numbers is the sum divided by the number of terms.
x=90+225+490+495+1105¯x=90+225+490+495+1105
Step 7
Cancel the common factor of 90+225+490+495+11090+225+490+495+110 and 55.
Tap for more steps...
Step 7.1
Factor 55 out of 9090.
x=518+225+490+495+1105¯x=518+225+490+495+1105
Step 7.2
Factor 55 out of 225225.
x=518+545+490+495+1105¯x=518+545+490+495+1105
Step 7.3
Factor 55 out of 518+545518+545.
x=5(18+45)+490+495+1105¯x=5(18+45)+490+495+1105
Step 7.4
Factor 55 out of 490490.
x=5(18+45)+598+495+1105¯x=5(18+45)+598+495+1105
Step 7.5
Factor 55 out of 5(18+45)+5(98)5(18+45)+5(98).
x=5(18+45+98)+495+1105¯x=5(18+45+98)+495+1105
Step 7.6
Factor 55 out of 495495.
x=5(18+45+98)+599+1105¯x=5(18+45+98)+599+1105
Step 7.7
Factor 55 out of 5(18+45+98)+5(99)5(18+45+98)+5(99).
x=5(18+45+98+99)+1105¯x=5(18+45+98+99)+1105
Step 7.8
Factor 55 out of 110110.
x=5(18+45+98+99)+5225¯x=5(18+45+98+99)+5225
Step 7.9
Factor 55 out of 5(18+45+98+99)+5(22)5(18+45+98+99)+5(22).
x=5(18+45+98+99+22)5¯x=5(18+45+98+99+22)5
Step 7.10
Cancel the common factors.
Tap for more steps...
Step 7.10.1
Factor 55 out of 55.
x=5(18+45+98+99+22)5(1)¯x=5(18+45+98+99+22)5(1)
Step 7.10.2
Cancel the common factor.
x=5(18+45+98+99+22)51
Step 7.10.3
Rewrite the expression.
x=18+45+98+99+221
Step 7.10.4
Divide 18+45+98+99+22 by 1.
x=18+45+98+99+22
x=18+45+98+99+22
x=18+45+98+99+22
Step 8
Simplify by adding numbers.
Tap for more steps...
Step 8.1
Add 18 and 45.
x=63+98+99+22
Step 8.2
Add 63 and 98.
x=161+99+22
Step 8.3
Add 161 and 99.
x=260+22
Step 8.4
Add 260 and 22.
x=282
x=282
Step 9
Set up the formula for variance. The variance of a set of values is a measure of the spread of its values.
s2=ni=1(xi-xavg)2n-1
Step 10
Set up the formula for variance for this set of numbers.
s=(90-282)2+(225-282)2+(490-282)2+(495-282)2+(110-282)25-1
Step 11
Simplify the result.
Tap for more steps...
Step 11.1
Simplify the numerator.
Tap for more steps...
Step 11.1.1
Subtract 282 from 90.
s=(-192)2+(225-282)2+(490-282)2+(495-282)2+(110-282)25-1
Step 11.1.2
Raise -192 to the power of 2.
s=36864+(225-282)2+(490-282)2+(495-282)2+(110-282)25-1
Step 11.1.3
Subtract 282 from 225.
s=36864+(-57)2+(490-282)2+(495-282)2+(110-282)25-1
Step 11.1.4
Raise -57 to the power of 2.
s=36864+3249+(490-282)2+(495-282)2+(110-282)25-1
Step 11.1.5
Subtract 282 from 490.
s=36864+3249+2082+(495-282)2+(110-282)25-1
Step 11.1.6
Raise 208 to the power of 2.
s=36864+3249+43264+(495-282)2+(110-282)25-1
Step 11.1.7
Subtract 282 from 495.
s=36864+3249+43264+2132+(110-282)25-1
Step 11.1.8
Raise 213 to the power of 2.
s=36864+3249+43264+45369+(110-282)25-1
Step 11.1.9
Subtract 282 from 110.
s=36864+3249+43264+45369+(-172)25-1
Step 11.1.10
Raise -172 to the power of 2.
s=36864+3249+43264+45369+295845-1
Step 11.1.11
Add 36864 and 3249.
s=40113+43264+45369+295845-1
Step 11.1.12
Add 40113 and 43264.
s=83377+45369+295845-1
Step 11.1.13
Add 83377 and 45369.
s=128746+295845-1
Step 11.1.14
Add 128746 and 29584.
s=1583305-1
s=1583305-1
Step 11.2
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 11.2.1
Subtract 1 from 5.
s=1583304
Step 11.2.2
Cancel the common factor of 158330 and 4.
Tap for more steps...
Step 11.2.2.1
Factor 2 out of 158330.
s=2(79165)4
Step 11.2.2.2
Cancel the common factors.
Tap for more steps...
Step 11.2.2.2.1
Factor 2 out of 4.
s=27916522
Step 11.2.2.2.2
Cancel the common factor.
s=27916522
Step 11.2.2.2.3
Rewrite the expression.
s=791652
s=791652
s=791652
s=791652
s=791652
Step 12
Approximate the result.
s239582.5
 [x2  12  π  xdx ]