Finite Math Examples

Approximate Using the Normal Distribution n=2 , x=22 , sigma=10 , alpha=0.95
n=2n=2 , x=22x=22 , σ=10σ=10 , α=0.95α=0.95
Step 1
Find the mean of the binomial distribution.
Tap for more steps...
Step 1.1
The mean of the binomial distribution can be found using the formula.
μ=npμ=np
Step 1.2
Fill in the known values.
22
Step 1.3
Remove parentheses.
22
22
Step 2
Find the standard deviation of the binomial distribution.
Tap for more steps...
Step 2.1
The standard deviation of the binomial distribution can be found using the formula.
σ=npqσ=npq
Step 2.2
Fill in the known values.
22
Step 2.3
Remove parentheses.
22
22
Step 3
Use the calculated values to find the z-score.
Tap for more steps...
Step 3.1
The z-score converts a non-standard distribution to a standard distribution in order to find the probability of an event.
x-μσxμσ
Step 3.2
Find the z-score.
Tap for more steps...
Step 3.2.1
Fill in the known values.
22-(2)1022(2)10
Step 3.2.2
Simplify the expression.
Tap for more steps...
Step 3.2.2.1
Cancel the common factor of 22-(2)22(2) and 1010.
Tap for more steps...
Step 3.2.2.1.1
Rewrite 2222 as -1(-22)1(22).
-1(-22)-(2)101(22)(2)10
Step 3.2.2.1.2
Factor -11 out of -1(-22)-(2)1(22)(2).
-1(-22+2)101(22+2)10
Step 3.2.2.1.3
Factor 22 out of -1(-22+2)1(22+2).
2(-1(-11+1))102(1(11+1))10
Step 3.2.2.1.4
Cancel the common factors.
Tap for more steps...
Step 3.2.2.1.4.1
Factor 22 out of 1010.
2(-1(-11+1))2(5)2(1(11+1))2(5)
Step 3.2.2.1.4.2
Cancel the common factor.
2(-1(-11+1))25
Step 3.2.2.1.4.3
Rewrite the expression.
-1(-11+1)5
-1(-11+1)5
-1(-11+1)5
Step 3.2.2.2
Simplify the expression.
Tap for more steps...
Step 3.2.2.2.1
Add -11 and 1.
-1-105
Step 3.2.2.2.2
Multiply -1 by -10.
105
Step 3.2.2.2.3
Divide 10 by 5.
2
2
2
2
2
 [x2  12  π  xdx ]