Finite Math Examples

Find the Regression Line table[[x,y],[0,0.897],[0,0.886],[1,0.891],[1,0.881],[2,0.888],[2,0.871],[3,0.868],[3,0.876],[4,0.873],[5,0.875],[5,0.871],[6,0.867],[7,0.862],[7,0.872],[8,0.865]]
xy00.89700.88610.89110.88120.88820.87130.86830.87640.87350.87550.87160.86770.86270.87280.865
Step 1
The slope of the best fit regression line can be found using the formula.
m=n(xy)-xyn(x2)-(x)2
Step 2
The y-intercept of the best fit regression line can be found using the formula.
b=(y)(x2)-xxyn(x2)-(x)2
Step 3
Sum up the x values.
x=0+0+1+1+2+2+3+3+4+5+5+6+7+7+8
Step 4
Simplify the expression.
x=54
Step 5
Sum up the y values.
y=0.897+0.886+0.891+0.881+0.888+0.871+0.868+0.876+0.873+0.875+0.871+0.867+0.862+0.872+0.865
Step 6
Simplify the expression.
y=13.143
Step 7
Sum up the values of xy.
xy=00.897+00.886+10.891+10.881+20.888+20.871+30.868+30.876+40.873+50.875+50.871+60.867+70.862+70.872+80.865
Step 8
Simplify the expression.
xy=47.003998
Step 9
Sum up the values of x2.
x2=(0)2+(0)2+(1)2+(1)2+(2)2+(2)2+(3)2+(3)2+(4)2+(5)2+(5)2+(6)2+(7)2+(7)2+(8)2
Step 10
Simplify the expression.
x2=292
Step 11
Sum up the values of y2.
y2=(0.897)2+(0.886)2+(0.891)2+(0.881)2+(0.888)2+(0.871)2+(0.868)2+(0.876)2+(0.873)2+(0.875)2+(0.871)2+(0.867)2+(0.862)2+(0.872)2+(0.865)2
Step 12
Simplify the expression.
y2=11.5173688
Step 13
Fill in the computed values.
m=15(47.003998)-5413.14315(292)-(54)2
Step 14
Simplify the expression.
m=-0.00318445
Step 15
Fill in the computed values.
b=(13.143)(292)-5447.00399815(292)-(54)2
Step 16
Simplify the expression.
b=0.88766396
Step 17
Fill in the values of slope m and y-intercept b into the slope-intercept formula.
y=-0.00318445x+0.88766396
 [x2  12  π  xdx ]