Enter a problem...
Finite Math Examples
xy00.89700.88610.89110.88120.88820.87130.86830.87640.87350.87550.87160.86770.86270.87280.865
Step 1
The slope of the best fit regression line can be found using the formula.
m=n(∑xy)-∑x∑yn(∑x2)-(∑x)2
Step 2
The y-intercept of the best fit regression line can be found using the formula.
b=(∑y)(∑x2)-∑x∑xyn(∑x2)-(∑x)2
Step 3
Sum up the x values.
∑x=0+0+1+1+2+2+3+3+4+5+5+6+7+7+8
Step 4
Simplify the expression.
∑x=54
Step 5
Sum up the y values.
∑y=0.897+0.886+0.891+0.881+0.888+0.871+0.868+0.876+0.873+0.875+0.871+0.867+0.862+0.872+0.865
Step 6
Simplify the expression.
∑y=13.143
Step 7
Sum up the values of x⋅y.
∑xy=0⋅0.897+0⋅0.886+1⋅0.891+1⋅0.881+2⋅0.888+2⋅0.871+3⋅0.868+3⋅0.876+4⋅0.873+5⋅0.875+5⋅0.871+6⋅0.867+7⋅0.862+7⋅0.872+8⋅0.865
Step 8
Simplify the expression.
∑xy=47.003998
Step 9
Sum up the values of x2.
∑x2=(0)2+(0)2+(1)2+(1)2+(2)2+(2)2+(3)2+(3)2+(4)2+(5)2+(5)2+(6)2+(7)2+(7)2+(8)2
Step 10
Simplify the expression.
∑x2=292
Step 11
Sum up the values of y2.
∑y2=(0.897)2+(0.886)2+(0.891)2+(0.881)2+(0.888)2+(0.871)2+(0.868)2+(0.876)2+(0.873)2+(0.875)2+(0.871)2+(0.867)2+(0.862)2+(0.872)2+(0.865)2
Step 12
Simplify the expression.
∑y2=11.5173688
Step 13
Fill in the computed values.
m=15(47.003998)-54⋅13.14315(292)-(54)2
Step 14
Simplify the expression.
m=-0.00318445
Step 15
Fill in the computed values.
b=(13.143)(292)-54⋅47.00399815(292)-(54)2
Step 16
Simplify the expression.
b=0.88766396
Step 17
Fill in the values of slope m and y-intercept b into the slope-intercept formula.
y=-0.00318445x+0.88766396