Enter a problem...
Finite Math Examples
xy01142163644256xy01142163644256
Step 1
The linear correlation coefficient measures the relationship between the paired values in a sample.
r=n(∑xy)-∑x∑y√n(∑x2)-(∑x)2⋅√n(∑y2)-(∑y)2r=n(∑xy)−∑x∑y√n(∑x2)−(∑x)2⋅√n(∑y2)−(∑y)2
Step 2
Sum up the xx values.
∑x=0+1+2+3+4∑x=0+1+2+3+4
Step 3
Simplify the expression.
∑x=10∑x=10
Step 4
Sum up the yy values.
∑y=1+4+16+64+256∑y=1+4+16+64+256
Step 5
Simplify the expression.
∑y=341∑y=341
Step 6
Sum up the values of x⋅yx⋅y.
∑xy=0⋅1+1⋅4+2⋅16+3⋅64+4⋅256∑xy=0⋅1+1⋅4+2⋅16+3⋅64+4⋅256
Step 7
Simplify the expression.
∑xy=1252∑xy=1252
Step 8
Sum up the values of x2x2.
∑x2=(0)2+(1)2+(2)2+(3)2+(4)2∑x2=(0)2+(1)2+(2)2+(3)2+(4)2
Step 9
Simplify the expression.
∑x2=30∑x2=30
Step 10
Sum up the values of y2y2.
∑y2=(1)2+(4)2+(16)2+(64)2+(256)2∑y2=(1)2+(4)2+(16)2+(64)2+(256)2
Step 11
Simplify the expression.
∑y2=69905∑y2=69905
Step 12
Fill in the computed values.
r=5(1252)-10⋅341√5(30)-(10)2⋅√5(69905)-(341)2r=5(1252)−10⋅341√5(30)−(10)2⋅√5(69905)−(341)2
Step 13
Simplify the expression.
r=0.83455433r=0.83455433
Step 14
Find the critical value for a confidence level of 00 and 55 degrees of freedom.
t=3.18244628t=3.18244628