Enter a problem...
Finite Math Examples
xy011000xy011000
Step 1
The linear correlation coefficient measures the relationship between the paired values in a sample.
r=n(∑xy)-∑x∑y√n(∑x2)-(∑x)2⋅√n(∑y2)-(∑y)2r=n(∑xy)−∑x∑y√n(∑x2)−(∑x)2⋅√n(∑y2)−(∑y)2
Step 2
Sum up the xx values.
∑x=0+1+0∑x=0+1+0
Step 3
Simplify the expression.
∑x=1∑x=1
Step 4
Sum up the yy values.
∑y=1+0+0∑y=1+0+0
Step 5
Simplify the expression.
∑y=1∑y=1
Step 6
Sum up the values of x⋅yx⋅y.
∑xy=0⋅1+1⋅0+0⋅0∑xy=0⋅1+1⋅0+0⋅0
Step 7
Simplify the expression.
∑xy=0∑xy=0
Step 8
Sum up the values of x2x2.
∑x2=(0)2+(1)2+(0)2∑x2=(0)2+(1)2+(0)2
Step 9
Simplify the expression.
∑x2=1∑x2=1
Step 10
Sum up the values of y2y2.
∑y2=(1)2+(0)2+(0)2∑y2=(1)2+(0)2+(0)2
Step 11
Simplify the expression.
∑y2=1∑y2=1
Step 12
Fill in the computed values.
r=3(0)-1⋅1√3(1)-(1)2⋅√3(1)-(1)2r=3(0)−1⋅1√3(1)−(1)2⋅√3(1)−(1)2
Step 13
Simplify the expression.
r=-0.4‾9r=−0.4¯9
Step 14
Find the critical value for a confidence level of 00 and 33 degrees of freedom.
t=12.70620454t=12.70620454