Enter a problem...
Finite Math Examples
[-3-520]
Step 1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI2)
Step 2
The identity matrix or unit matrix of size 2 is the 2×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001]
Step 3
Step 3.1
Substitute [-3-520] for A.
p(λ)=determinant([-3-520]-λI2)
Step 3.2
Substitute [1001] for I2.
p(λ)=determinant([-3-520]-λ[1001])
p(λ)=determinant([-3-520]-λ[1001])
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([-3-520]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([-3-520]+[-λ-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.2
Multiply -λ⋅0.
Step 4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([-3-520]+[-λ0λ-λ⋅0-λ⋅1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([-3-520]+[-λ0-λ⋅0-λ⋅1])
p(λ)=determinant([-3-520]+[-λ0-λ⋅0-λ⋅1])
Step 4.1.2.3
Multiply -λ⋅0.
Step 4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([-3-520]+[-λ00λ-λ⋅1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([-3-520]+[-λ00-λ⋅1])
p(λ)=determinant([-3-520]+[-λ00-λ⋅1])
Step 4.1.2.4
Multiply -1 by 1.
p(λ)=determinant([-3-520]+[-λ00-λ])
p(λ)=determinant([-3-520]+[-λ00-λ])
p(λ)=determinant([-3-520]+[-λ00-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[-3-λ-5+02+00-λ]
Step 4.3
Simplify each element.
Step 4.3.1
Add -5 and 0.
p(λ)=determinant[-3-λ-52+00-λ]
Step 4.3.2
Add 2 and 0.
p(λ)=determinant[-3-λ-520-λ]
Step 4.3.3
Subtract λ from 0.
p(λ)=determinant[-3-λ-52-λ]
p(λ)=determinant[-3-λ-52-λ]
p(λ)=determinant[-3-λ-52-λ]
Step 5
Step 5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(-3-λ)(-λ)-2⋅-5
Step 5.2
Simplify the determinant.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Apply the distributive property.
p(λ)=-3(-λ)-λ(-λ)-2⋅-5
Step 5.2.1.2
Multiply -1 by -3.
p(λ)=3λ-λ(-λ)-2⋅-5
Step 5.2.1.3
Rewrite using the commutative property of multiplication.
p(λ)=3λ-1⋅-1λ⋅λ-2⋅-5
Step 5.2.1.4
Simplify each term.
Step 5.2.1.4.1
Multiply λ by λ by adding the exponents.
Step 5.2.1.4.1.1
Move λ.
p(λ)=3λ-1⋅-1(λ⋅λ)-2⋅-5
Step 5.2.1.4.1.2
Multiply λ by λ.
p(λ)=3λ-1⋅-1λ2-2⋅-5
p(λ)=3λ-1⋅-1λ2-2⋅-5
Step 5.2.1.4.2
Multiply -1 by -1.
p(λ)=3λ+1λ2-2⋅-5
Step 5.2.1.4.3
Multiply λ2 by 1.
p(λ)=3λ+λ2-2⋅-5
p(λ)=3λ+λ2-2⋅-5
Step 5.2.1.5
Multiply -2 by -5.
p(λ)=3λ+λ2+10
p(λ)=3λ+λ2+10
Step 5.2.2
Reorder 3λ and λ2.
p(λ)=λ2+3λ+10
p(λ)=λ2+3λ+10
p(λ)=λ2+3λ+10
Step 6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
λ2+3λ+10=0
Step 7
Step 7.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 7.2
Substitute the values a=1, b=3, and c=10 into the quadratic formula and solve for λ.
-3±√32-4⋅(1⋅10)2⋅1
Step 7.3
Simplify.
Step 7.3.1
Simplify the numerator.
Step 7.3.1.1
Raise 3 to the power of 2.
λ=-3±√9-4⋅1⋅102⋅1
Step 7.3.1.2
Multiply -4⋅1⋅10.
Step 7.3.1.2.1
Multiply -4 by 1.
λ=-3±√9-4⋅102⋅1
Step 7.3.1.2.2
Multiply -4 by 10.
λ=-3±√9-402⋅1
λ=-3±√9-402⋅1
Step 7.3.1.3
Subtract 40 from 9.
λ=-3±√-312⋅1
Step 7.3.1.4
Rewrite -31 as -1(31).
λ=-3±√-1⋅312⋅1
Step 7.3.1.5
Rewrite √-1(31) as √-1⋅√31.
λ=-3±√-1⋅√312⋅1
Step 7.3.1.6
Rewrite √-1 as i.
λ=-3±i√312⋅1
λ=-3±i√312⋅1
Step 7.3.2
Multiply 2 by 1.
λ=-3±i√312
λ=-3±i√312
Step 7.4
The final answer is the combination of both solutions.
λ=-3-i√312,-3+i√312
λ=-3-i√312,-3+i√312