Finite Math Examples

Solve for t t=3/2*(3/2*(3/2*(9p+1)+1)+1)+1
t=32(32(32(9p+1)+1)+1)+1t=32(32(32(9p+1)+1)+1)+1
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Simplify each term.
Tap for more steps...
Step 1.1.1
Simplify each term.
Tap for more steps...
Step 1.1.1.1
Apply the distributive property.
t=32(32(32(9p)+321+1)+1)+1t=32(32(32(9p)+321+1)+1)+1
Step 1.1.1.2
Multiply 32(9p)32(9p).
Tap for more steps...
Step 1.1.1.2.1
Combine 99 and 3232.
t=32(32(932p+321+1)+1)+1t=32(32(932p+321+1)+1)+1
Step 1.1.1.2.2
Multiply 99 by 33.
t=32(32(272p+321+1)+1)+1t=32(32(272p+321+1)+1)+1
Step 1.1.1.2.3
Combine 272272 and pp.
t=32(32(27p2+321+1)+1)+1t=32(32(27p2+321+1)+1)+1
t=32(32(27p2+321+1)+1)+1t=32(32(27p2+321+1)+1)+1
Step 1.1.1.3
Multiply 3232 by 11.
t=32(32(27p2+32+1)+1)+1t=32(32(27p2+32+1)+1)+1
t=32(32(27p2+32+1)+1)+1t=32(32(27p2+32+1)+1)+1
Step 1.1.2
Write 11 as a fraction with a common denominator.
t=32(32(27p2+32+22)+1)+1t=32(32(27p2+32+22)+1)+1
Step 1.1.3
Combine the numerators over the common denominator.
t=32(32(27p2+3+22)+1)+1t=32(32(27p2+3+22)+1)+1
Step 1.1.4
Add 3 and 2.
t=32(32(27p2+52)+1)+1
Step 1.1.5
Apply the distributive property.
t=32(3227p2+3252+1)+1
Step 1.1.6
Multiply 3227p2.
Tap for more steps...
Step 1.1.6.1
Multiply 32 by 27p2.
t=32(3(27p)22+3252+1)+1
Step 1.1.6.2
Multiply 27 by 3.
t=32(81p22+3252+1)+1
Step 1.1.6.3
Multiply 2 by 2.
t=32(81p4+3252+1)+1
t=32(81p4+3252+1)+1
Step 1.1.7
Multiply 3252.
Tap for more steps...
Step 1.1.7.1
Multiply 32 by 52.
t=32(81p4+3522+1)+1
Step 1.1.7.2
Multiply 3 by 5.
t=32(81p4+1522+1)+1
Step 1.1.7.3
Multiply 2 by 2.
t=32(81p4+154+1)+1
t=32(81p4+154+1)+1
t=32(81p4+154+1)+1
Step 1.2
Write 1 as a fraction with a common denominator.
t=32(81p4+154+44)+1
Step 1.3
Combine the numerators over the common denominator.
t=32(81p4+15+44)+1
Step 1.4
Add 15 and 4.
t=32(81p4+194)+1
Step 1.5
Apply the distributive property.
t=3281p4+32194+1
Step 1.6
Multiply 3281p4.
Tap for more steps...
Step 1.6.1
Multiply 32 by 81p4.
t=3(81p)24+32194+1
Step 1.6.2
Multiply 81 by 3.
t=243p24+32194+1
Step 1.6.3
Multiply 2 by 4.
t=243p8+32194+1
t=243p8+32194+1
Step 1.7
Multiply 32194.
Tap for more steps...
Step 1.7.1
Multiply 32 by 194.
t=243p8+31924+1
Step 1.7.2
Multiply 3 by 19.
t=243p8+5724+1
Step 1.7.3
Multiply 2 by 4.
t=243p8+578+1
t=243p8+578+1
t=243p8+578+1
Step 2
Simplify the expression.
Tap for more steps...
Step 2.1
Write 1 as a fraction with a common denominator.
t=243p8+578+88
Step 2.2
Combine the numerators over the common denominator.
t=243p8+57+88
Step 2.3
Add 57 and 8.
t=243p8+658
t=243p8+658
 [x2  12  π  xdx ]