Enter a problem...
Chemistry Examples
Step 1
Step 1.1
Simplify .
Step 1.1.1
Since is an odd function, rewrite as .
Step 1.1.2
Rewrite in terms of sines and cosines, then cancel the common factors.
Step 1.1.2.1
Add parentheses.
Step 1.1.2.2
Reorder and .
Step 1.1.2.3
Rewrite in terms of sines and cosines.
Step 1.1.2.4
Cancel the common factors.
Step 2
Step 2.1
Subtract from both sides of the equation.
Step 2.2
Subtract from .
Step 3
Step 3.1
Divide each term in by .
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of .
Step 3.2.1.1
Cancel the common factor.
Step 3.2.1.2
Divide by .
Step 3.3
Simplify the right side.
Step 3.3.1
Divide by .
Step 4
Take the inverse cosine of both sides of the equation to extract from inside the cosine.
Step 5
Step 5.1
The exact value of is .
Step 6
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the fourth quadrant.
Step 7
Step 7.1
To write as a fraction with a common denominator, multiply by .
Step 7.2
Combine fractions.
Step 7.2.1
Combine and .
Step 7.2.2
Combine the numerators over the common denominator.
Step 7.3
Simplify the numerator.
Step 7.3.1
Multiply by .
Step 7.3.2
Subtract from .
Step 8
Step 8.1
The period of the function can be calculated using .
Step 8.2
Replace with in the formula for period.
Step 8.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 8.4
Divide by .
Step 9
The period of the function is so values will repeat every radians in both directions.
, for any integer
Step 10
Consolidate the answers.
, for any integer