Enter a problem...
Calculus Examples
x=etx=et , y=e-3ty=e−3t
Step 1
Set up the parametric equation for x(t)x(t) to solve the equation for tt.
x=etx=et
Step 2
Rewrite the equation as et=xet=x.
et=xet=x
Step 3
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(et)=ln(x)ln(et)=ln(x)
Step 4
Step 4.1
Expand ln(et)ln(et) by moving tt outside the logarithm.
tln(e)=ln(x)tln(e)=ln(x)
Step 4.2
The natural logarithm of ee is 11.
t⋅1=ln(x)t⋅1=ln(x)
Step 4.3
Multiply tt by 11.
t=ln(x)t=ln(x)
t=ln(x)t=ln(x)
Step 5
Replace tt in the equation for yy to get the equation in terms of xx.
y=e-3ln(x)y=e−3ln(x)
Step 6
Step 6.1
Simplify -3ln(x)−3ln(x) by moving -3−3 inside the logarithm.
y=eln(x-3)y=eln(x−3)
Step 6.2
Exponentiation and log are inverse functions.
y=x-3y=x−3
Step 6.3
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
y=1x3y=1x3
y=1x3y=1x3