Enter a problem...
Calculus Examples
y=13-x2y=13−x2 , y=x2-5y=x2−5
Step 1
Step 1.1
Eliminate the equal sides of each equation and combine.
13-x2=x2-513−x2=x2−5
Step 1.2
Solve 13-x2=x2-513−x2=x2−5 for xx.
Step 1.2.1
Move all terms containing xx to the left side of the equation.
Step 1.2.1.1
Subtract x2x2 from both sides of the equation.
13-x2-x2=-513−x2−x2=−5
Step 1.2.1.2
Subtract x2x2 from -x2−x2.
13-2x2=-513−2x2=−5
13-2x2=-513−2x2=−5
Step 1.2.2
Move all terms not containing xx to the right side of the equation.
Step 1.2.2.1
Subtract 1313 from both sides of the equation.
-2x2=-5-13−2x2=−5−13
Step 1.2.2.2
Subtract 1313 from -5−5.
-2x2=-18−2x2=−18
-2x2=-18−2x2=−18
Step 1.2.3
Divide each term in -2x2=-18−2x2=−18 by -2−2 and simplify.
Step 1.2.3.1
Divide each term in -2x2=-18−2x2=−18 by -2−2.
-2x2-2=-18-2−2x2−2=−18−2
Step 1.2.3.2
Simplify the left side.
Step 1.2.3.2.1
Cancel the common factor of -2−2.
Step 1.2.3.2.1.1
Cancel the common factor.
-2x2-2=-18-2
Step 1.2.3.2.1.2
Divide x2 by 1.
x2=-18-2
x2=-18-2
x2=-18-2
Step 1.2.3.3
Simplify the right side.
Step 1.2.3.3.1
Divide -18 by -2.
x2=9
x2=9
x2=9
Step 1.2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√9
Step 1.2.5
Simplify ±√9.
Step 1.2.5.1
Rewrite 9 as 32.
x=±√32
Step 1.2.5.2
Pull terms out from under the radical, assuming positive real numbers.
x=±3
x=±3
Step 1.2.6
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.2.6.1
First, use the positive value of the ± to find the first solution.
x=3
Step 1.2.6.2
Next, use the negative value of the ± to find the second solution.
x=-3
Step 1.2.6.3
The complete solution is the result of both the positive and negative portions of the solution.
x=3,-3
x=3,-3
x=3,-3
Step 1.3
Evaluate y when x=3.
Step 1.3.1
Substitute 3 for x.
y=(3)2-5
Step 1.3.2
Substitute 3 for x in y=(3)2-5 and solve for y.
Step 1.3.2.1
Remove parentheses.
y=32-5
Step 1.3.2.2
Simplify 32-5.
Step 1.3.2.2.1
Raise 3 to the power of 2.
y=9-5
Step 1.3.2.2.2
Subtract 5 from 9.
y=4
y=4
y=4
y=4
Step 1.4
The solution to the system is the complete set of ordered pairs that are valid solutions.
(3,4)
(-3,4)
(3,4)
(-3,4)
Step 2
Reorder 13 and -x2.
y=-x2+13
Step 3
The area of the region between the curves is defined as the integral of the upper curve minus the integral of the lower curve over each region. The regions are determined by the intersection points of the curves. This can be done algebraically or graphically.
Area=∫3-3-x2+13dx-∫3-3x2-5dx
Step 4
Step 4.1
Combine the integrals into a single integral.
∫3-3-x2+13-(x2-5)dx
Step 4.2
Simplify each term.
Step 4.2.1
Apply the distributive property.
-x2+13-x2--5
Step 4.2.2
Multiply -1 by -5.
-x2+13-x2+5
∫3-3-x2+13-x2+5dx
Step 4.3
Simplify by adding terms.
Step 4.3.1
Subtract x2 from -x2.
-2x2+13+5
Step 4.3.2
Add 13 and 5.
-2x2+18
∫3-3-2x2+18dx
Step 4.4
Split the single integral into multiple integrals.
∫3-3-2x2dx+∫3-318dx
Step 4.5
Since -2 is constant with respect to x, move -2 out of the integral.
-2∫3-3x2dx+∫3-318dx
Step 4.6
By the Power Rule, the integral of x2 with respect to x is 13x3.
-2(13x3]3-3)+∫3-318dx
Step 4.7
Combine 13 and x3.
-2(x33]3-3)+∫3-318dx
Step 4.8
Apply the constant rule.
-2(x33]3-3)+18x]3-3
Step 4.9
Substitute and simplify.
Step 4.9.1
Evaluate x33 at 3 and at -3.
-2((333)-(-3)33)+18x]3-3
Step 4.9.2
Evaluate 18x at 3 and at -3.
-2(333-(-3)33)+18⋅3-18⋅-3
Step 4.9.3
Simplify.
Step 4.9.3.1
Raise 3 to the power of 3.
-2(273-(-3)33)+18⋅3-18⋅-3
Step 4.9.3.2
Cancel the common factor of 27 and 3.
Step 4.9.3.2.1
Factor 3 out of 27.
-2(3⋅93-(-3)33)+18⋅3-18⋅-3
Step 4.9.3.2.2
Cancel the common factors.
Step 4.9.3.2.2.1
Factor 3 out of 3.
-2(3⋅93(1)-(-3)33)+18⋅3-18⋅-3
Step 4.9.3.2.2.2
Cancel the common factor.
-2(3⋅93⋅1-(-3)33)+18⋅3-18⋅-3
Step 4.9.3.2.2.3
Rewrite the expression.
-2(91-(-3)33)+18⋅3-18⋅-3
Step 4.9.3.2.2.4
Divide 9 by 1.
-2(9-(-3)33)+18⋅3-18⋅-3
-2(9-(-3)33)+18⋅3-18⋅-3
-2(9-(-3)33)+18⋅3-18⋅-3
Step 4.9.3.3
Raise -3 to the power of 3.
-2(9--273)+18⋅3-18⋅-3
Step 4.9.3.4
Cancel the common factor of -27 and 3.
Step 4.9.3.4.1
Factor 3 out of -27.
-2(9-3⋅-93)+18⋅3-18⋅-3
Step 4.9.3.4.2
Cancel the common factors.
Step 4.9.3.4.2.1
Factor 3 out of 3.
-2(9-3⋅-93(1))+18⋅3-18⋅-3
Step 4.9.3.4.2.2
Cancel the common factor.
-2(9-3⋅-93⋅1)+18⋅3-18⋅-3
Step 4.9.3.4.2.3
Rewrite the expression.
-2(9--91)+18⋅3-18⋅-3
Step 4.9.3.4.2.4
Divide -9 by 1.
-2(9--9)+18⋅3-18⋅-3
-2(9--9)+18⋅3-18⋅-3
-2(9--9)+18⋅3-18⋅-3
Step 4.9.3.5
Multiply -1 by -9.
-2(9+9)+18⋅3-18⋅-3
Step 4.9.3.6
Add 9 and 9.
-2⋅18+18⋅3-18⋅-3
Step 4.9.3.7
Multiply -2 by 18.
-36+18⋅3-18⋅-3
Step 4.9.3.8
Multiply 18 by 3.
-36+54-18⋅-3
Step 4.9.3.9
Multiply -18 by -3.
-36+54+54
Step 4.9.3.10
Add 54 and 54.
-36+108
Step 4.9.3.11
Add -36 and 108.
72
72
72
72
Step 5
