Calculus Examples

Find the Area Between the Curves y=13-x^2 , y=x^2-5
y=13-x2y=13x2 , y=x2-5y=x25
Step 1
Solve by substitution to find the intersection between the curves.
Tap for more steps...
Step 1.1
Eliminate the equal sides of each equation and combine.
13-x2=x2-513x2=x25
Step 1.2
Solve 13-x2=x2-513x2=x25 for xx.
Tap for more steps...
Step 1.2.1
Move all terms containing xx to the left side of the equation.
Tap for more steps...
Step 1.2.1.1
Subtract x2x2 from both sides of the equation.
13-x2-x2=-513x2x2=5
Step 1.2.1.2
Subtract x2x2 from -x2x2.
13-2x2=-5132x2=5
13-2x2=-5132x2=5
Step 1.2.2
Move all terms not containing xx to the right side of the equation.
Tap for more steps...
Step 1.2.2.1
Subtract 1313 from both sides of the equation.
-2x2=-5-132x2=513
Step 1.2.2.2
Subtract 1313 from -55.
-2x2=-182x2=18
-2x2=-182x2=18
Step 1.2.3
Divide each term in -2x2=-182x2=18 by -22 and simplify.
Tap for more steps...
Step 1.2.3.1
Divide each term in -2x2=-182x2=18 by -22.
-2x2-2=-18-22x22=182
Step 1.2.3.2
Simplify the left side.
Tap for more steps...
Step 1.2.3.2.1
Cancel the common factor of -22.
Tap for more steps...
Step 1.2.3.2.1.1
Cancel the common factor.
-2x2-2=-18-2
Step 1.2.3.2.1.2
Divide x2 by 1.
x2=-18-2
x2=-18-2
x2=-18-2
Step 1.2.3.3
Simplify the right side.
Tap for more steps...
Step 1.2.3.3.1
Divide -18 by -2.
x2=9
x2=9
x2=9
Step 1.2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±9
Step 1.2.5
Simplify ±9.
Tap for more steps...
Step 1.2.5.1
Rewrite 9 as 32.
x=±32
Step 1.2.5.2
Pull terms out from under the radical, assuming positive real numbers.
x=±3
x=±3
Step 1.2.6
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 1.2.6.1
First, use the positive value of the ± to find the first solution.
x=3
Step 1.2.6.2
Next, use the negative value of the ± to find the second solution.
x=-3
Step 1.2.6.3
The complete solution is the result of both the positive and negative portions of the solution.
x=3,-3
x=3,-3
x=3,-3
Step 1.3
Evaluate y when x=3.
Tap for more steps...
Step 1.3.1
Substitute 3 for x.
y=(3)2-5
Step 1.3.2
Substitute 3 for x in y=(3)2-5 and solve for y.
Tap for more steps...
Step 1.3.2.1
Remove parentheses.
y=32-5
Step 1.3.2.2
Simplify 32-5.
Tap for more steps...
Step 1.3.2.2.1
Raise 3 to the power of 2.
y=9-5
Step 1.3.2.2.2
Subtract 5 from 9.
y=4
y=4
y=4
y=4
Step 1.4
The solution to the system is the complete set of ordered pairs that are valid solutions.
(3,4)
(-3,4)
(3,4)
(-3,4)
Step 2
Reorder 13 and -x2.
y=-x2+13
Step 3
The area of the region between the curves is defined as the integral of the upper curve minus the integral of the lower curve over each region. The regions are determined by the intersection points of the curves. This can be done algebraically or graphically.
Area=3-3-x2+13dx-3-3x2-5dx
Step 4
Integrate to find the area between -3 and 3.
Tap for more steps...
Step 4.1
Combine the integrals into a single integral.
3-3-x2+13-(x2-5)dx
Step 4.2
Simplify each term.
Tap for more steps...
Step 4.2.1
Apply the distributive property.
-x2+13-x2--5
Step 4.2.2
Multiply -1 by -5.
-x2+13-x2+5
3-3-x2+13-x2+5dx
Step 4.3
Simplify by adding terms.
Tap for more steps...
Step 4.3.1
Subtract x2 from -x2.
-2x2+13+5
Step 4.3.2
Add 13 and 5.
-2x2+18
3-3-2x2+18dx
Step 4.4
Split the single integral into multiple integrals.
3-3-2x2dx+3-318dx
Step 4.5
Since -2 is constant with respect to x, move -2 out of the integral.
-23-3x2dx+3-318dx
Step 4.6
By the Power Rule, the integral of x2 with respect to x is 13x3.
-2(13x3]3-3)+3-318dx
Step 4.7
Combine 13 and x3.
-2(x33]3-3)+3-318dx
Step 4.8
Apply the constant rule.
-2(x33]3-3)+18x]3-3
Step 4.9
Substitute and simplify.
Tap for more steps...
Step 4.9.1
Evaluate x33 at 3 and at -3.
-2((333)-(-3)33)+18x]3-3
Step 4.9.2
Evaluate 18x at 3 and at -3.
-2(333-(-3)33)+183-18-3
Step 4.9.3
Simplify.
Tap for more steps...
Step 4.9.3.1
Raise 3 to the power of 3.
-2(273-(-3)33)+183-18-3
Step 4.9.3.2
Cancel the common factor of 27 and 3.
Tap for more steps...
Step 4.9.3.2.1
Factor 3 out of 27.
-2(393-(-3)33)+183-18-3
Step 4.9.3.2.2
Cancel the common factors.
Tap for more steps...
Step 4.9.3.2.2.1
Factor 3 out of 3.
-2(393(1)-(-3)33)+183-18-3
Step 4.9.3.2.2.2
Cancel the common factor.
-2(3931-(-3)33)+183-18-3
Step 4.9.3.2.2.3
Rewrite the expression.
-2(91-(-3)33)+183-18-3
Step 4.9.3.2.2.4
Divide 9 by 1.
-2(9-(-3)33)+183-18-3
-2(9-(-3)33)+183-18-3
-2(9-(-3)33)+183-18-3
Step 4.9.3.3
Raise -3 to the power of 3.
-2(9--273)+183-18-3
Step 4.9.3.4
Cancel the common factor of -27 and 3.
Tap for more steps...
Step 4.9.3.4.1
Factor 3 out of -27.
-2(9-3-93)+183-18-3
Step 4.9.3.4.2
Cancel the common factors.
Tap for more steps...
Step 4.9.3.4.2.1
Factor 3 out of 3.
-2(9-3-93(1))+183-18-3
Step 4.9.3.4.2.2
Cancel the common factor.
-2(9-3-931)+183-18-3
Step 4.9.3.4.2.3
Rewrite the expression.
-2(9--91)+183-18-3
Step 4.9.3.4.2.4
Divide -9 by 1.
-2(9--9)+183-18-3
-2(9--9)+183-18-3
-2(9--9)+183-18-3
Step 4.9.3.5
Multiply -1 by -9.
-2(9+9)+183-18-3
Step 4.9.3.6
Add 9 and 9.
-218+183-18-3
Step 4.9.3.7
Multiply -2 by 18.
-36+183-18-3
Step 4.9.3.8
Multiply 18 by 3.
-36+54-18-3
Step 4.9.3.9
Multiply -18 by -3.
-36+54+54
Step 4.9.3.10
Add 54 and 54.
-36+108
Step 4.9.3.11
Add -36 and 108.
72
72
72
72
Step 5
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]