Calculus Examples

Evaluate Using L'Hospital's Rule limit as x approaches negative infinity of xe^x
limxβ†’-∞xexlimxβ†’βˆ’βˆžxex
Step 1
Rewrite xexxex as xe-xxeβˆ’x.
limxβ†’-∞xe-xlimxβ†’βˆ’βˆžxeβˆ’x
Step 2
Apply L'Hospital's rule.
Tap for more steps...
Step 2.1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 2.1.1
Take the limit of the numerator and the limit of the denominator.
limxβ†’-∞xlimxβ†’-∞e-xlimxβ†’βˆ’βˆžxlimxβ†’βˆ’βˆžeβˆ’x
Step 2.1.2
The limit at negative infinity of a polynomial of odd degree whose leading coefficient is positive is negative infinity.
-∞limxβ†’-∞e-xβˆ’βˆžlimxβ†’βˆ’βˆžeβˆ’x
Step 2.1.3
Since the exponent -xβˆ’x approaches ∞∞, the quantity e-xeβˆ’x approaches ∞∞.
-βˆžβˆžβˆ’βˆžβˆž
Step 2.1.4
Infinity divided by infinity is undefined.
Undefined
-βˆžβˆžβˆ’βˆžβˆž
Step 2.2
Since -βˆžβˆžβˆ’βˆžβˆž is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
limxβ†’-∞xe-x=limxβ†’-∞ddx[x]ddx[e-x]limxβ†’βˆ’βˆžxeβˆ’x=limxβ†’βˆ’βˆžddx[x]ddx[eβˆ’x]
Step 2.3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 2.3.1
Differentiate the numerator and denominator.
limxβ†’-∞ddx[x]ddx[e-x]limxβ†’βˆ’βˆžddx[x]ddx[eβˆ’x]
Step 2.3.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxnβˆ’1 where n=1n=1.
limxβ†’-∞1ddx[e-x]limxβ†’βˆ’βˆž1ddx[eβˆ’x]
Step 2.3.3
Differentiate using the chain rule, which states that ddx[f(g(x))]ddx[f(g(x))] is fβ€²(g(x))gβ€²(x) where f(x)=ex and g(x)=-x.
Tap for more steps...
Step 2.3.3.1
To apply the Chain Rule, set u as -x.
limxβ†’-∞1ddu[eu]ddx[-x]
Step 2.3.3.2
Differentiate using the Exponential Rule which states that ddu[au] is auln(a) where a=e.
limxβ†’-∞1euddx[-x]
Step 2.3.3.3
Replace all occurrences of u with -x.
limxβ†’-∞1e-xddx[-x]
limxβ†’-∞1e-xddx[-x]
Step 2.3.4
Since -1 is constant with respect to x, the derivative of -x with respect to x is -ddx[x].
limxβ†’-∞1e-x(-ddx[x])
Step 2.3.5
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
limxβ†’-∞1e-x(-1β‹…1)
Step 2.3.6
Multiply -1 by 1.
limxβ†’-∞1e-xβ‹…-1
Step 2.3.7
Move -1 to the left of e-x.
limxβ†’-∞1-1β‹…e-x
Step 2.3.8
Rewrite -1e-x as -e-x.
limxβ†’-∞1-e-x
limxβ†’-∞1-e-x
Step 2.4
Cancel the common factor of 1 and -1.
Tap for more steps...
Step 2.4.1
Rewrite 1 as -1(-1).
limxβ†’-∞-1(-1)-e-x
Step 2.4.2
Move the negative in front of the fraction.
limxβ†’-∞-1e-x
limxβ†’-∞-1e-x
limxβ†’-∞-1e-x
Step 3
Move the term -1 outside of the limit because it is constant with respect to x.
-limxβ†’-∞1e-x
Step 4
Since its numerator approaches a real number while its denominator is unbounded, the fraction 1e-x approaches 0.
-0
Step 5
Multiply -1 by 0.
0
(
(
)
)
|
|
[
[
]
]
√
√
ο€£
ο€£
β‰₯
β‰₯
ο€°
ο€°
∫
∫


ο‚…
ο‚…
ο…„
ο…„
7
7
8
8
9
9
ο„Ή
ο„Ή
ο„·
ο„·
ο„Έ
ο„Έ
≀
≀


Β°
Β°
ΞΈ
ΞΈ
ο€ˆ
ο€ˆ
ο……
ο……
4
4
5
5
6
6
/
/
^
^
Γ—
Γ—
>
>
ο€”
ο€”
Ο€
Ο€




ο…†
ο…†
1
1
2
2
3
3
-
-
+
+
Γ·
Γ·
<
<


∞
∞


!
!

,
,
0
0
.
.
%
%

=
=




 [x2  12  βˆšΟ€  βˆ«xdx ]