Enter a problem...
Calculus Examples
f(x)=√xf(x)=√x , a=9a=9
Step 1
Consider the function used to find the linearization at aa.
L(x)=f(a)+f′(a)(x-a)
Step 2
Substitute the value of a=9 into the linearization function.
L(x)=f(9)+f′(9)(x-9)
Step 3
Step 3.1
Replace the variable x with 9 in the expression.
f(9)=√9
Step 3.2
Simplify √9.
Step 3.2.1
Remove parentheses.
(√9)
Step 3.2.2
Remove parentheses.
√9
Step 3.2.3
Rewrite 9 as 32.
√32
Step 3.2.4
Pull terms out from under the radical, assuming positive real numbers.
3
3
3
Step 4
Step 4.1
Find the derivative of f(x)=√x.
Step 4.1.1
Use n√ax=axn to rewrite √x as x12.
ddx[x12]
Step 4.1.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=12.
12x12-1
Step 4.1.3
To write -1 as a fraction with a common denominator, multiply by 22.
12x12-1⋅22
Step 4.1.4
Combine -1 and 22.
12x12+-1⋅22
Step 4.1.5
Combine the numerators over the common denominator.
12x1-1⋅22
Step 4.1.6
Simplify the numerator.
Step 4.1.6.1
Multiply -1 by 2.
12x1-22
Step 4.1.6.2
Subtract 2 from 1.
12x-12
12x-12
Step 4.1.7
Move the negative in front of the fraction.
12x-12
Step 4.1.8
Simplify.
Step 4.1.8.1
Rewrite the expression using the negative exponent rule b-n=1bn.
12⋅1x12
Step 4.1.8.2
Multiply 12 by 1x12.
12x12
12x12
12x12
Step 4.2
Replace the variable x with 9 in the expression.
12(9)12
Step 4.3
Simplify.
Step 4.3.1
Simplify the denominator.
Step 4.3.1.1
Rewrite 9 as 32.
12⋅(32)12
Step 4.3.1.2
Apply the power rule and multiply exponents, (am)n=amn.
12⋅32(12)
Step 4.3.1.3
Cancel the common factor of 2.
Step 4.3.1.3.1
Cancel the common factor.
12⋅32(12)
Step 4.3.1.3.2
Rewrite the expression.
12⋅31
12⋅31
Step 4.3.1.4
Evaluate the exponent.
12⋅3
12⋅3
Step 4.3.2
Multiply 2 by 3.
16
16
16
Step 5
Substitute the components into the linearization function in order to find the linearization at a.
L(x)=3+16(x-9)
Step 6
Step 6.1
Simplify each term.
Step 6.1.1
Apply the distributive property.
L(x)=3+16x+16⋅-9
Step 6.1.2
Combine 16 and x.
L(x)=3+x6+16⋅-9
Step 6.1.3
Cancel the common factor of 3.
Step 6.1.3.1
Factor 3 out of 6.
L(x)=3+x6+13(2)⋅-9
Step 6.1.3.2
Factor 3 out of -9.
L(x)=3+x6+13⋅2⋅(3⋅-3)
Step 6.1.3.3
Cancel the common factor.
L(x)=3+x6+13⋅2⋅(3⋅-3)
Step 6.1.3.4
Rewrite the expression.
L(x)=3+x6+12⋅-3
L(x)=3+x6+12⋅-3
Step 6.1.4
Combine 12 and -3.
L(x)=3+x6+-32
Step 6.1.5
Move the negative in front of the fraction.
L(x)=3+x6-32
L(x)=3+x6-32
Step 6.2
To write 3 as a fraction with a common denominator, multiply by 22.
L(x)=x6+3⋅22-32
Step 6.3
Combine 3 and 22.
L(x)=x6+3⋅22-32
Step 6.4
Combine the numerators over the common denominator.
L(x)=x6+3⋅2-32
Step 6.5
Simplify the numerator.
Step 6.5.1
Multiply 3 by 2.
L(x)=x6+6-32
Step 6.5.2
Subtract 3 from 6.
L(x)=x6+32
L(x)=x6+32
L(x)=x6+32
Step 7