Calculus Examples

Identify the Sequence 1/2 , 1/4 , 1/8 , 1/16
1212 , 1414 , 1818 , 116116
Step 1
This is a geometric sequence since there is a common ratio between each term. In this case, multiplying the previous term in the sequence by 1212 gives the next term. In other words, an=a1rn-1an=a1rn1.
Geometric Sequence: r=12r=12
Step 2
This is the form of a geometric sequence.
an=a1rn-1an=a1rn1
Step 3
Substitute in the values of a1=12a1=12 and r=12r=12.
an=12(12)n-1an=12(12)n1
Step 4
Multiply 1212 by (12)n-1(12)n1 by adding the exponents.
Tap for more steps...
Step 4.1
Multiply 1212 by (12)n-1(12)n1.
Tap for more steps...
Step 4.1.1
Raise 1212 to the power of 11.
an=(12)1(12)n-1an=(12)1(12)n1
Step 4.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
an=(12)1+n-1an=(12)1+n1
an=(12)1+n-1an=(12)1+n1
Step 4.2
Combine the opposite terms in 1+n-11+n1.
Tap for more steps...
Step 4.2.1
Subtract 11 from 11.
an=(12)n+0an=(12)n+0
Step 4.2.2
Add nn and 00.
an=(12)nan=(12)n
an=(12)nan=(12)n
an=(12)nan=(12)n
Step 5
Apply the product rule to 1212.
an=1n2nan=1n2n
Step 6
One to any power is one.
an=12nan=12n
Enter a problem...
 [x2  12  π  xdx ]  x2  12  π  xdx