Enter a problem...
Calculus Examples
Step 1
Step 1.1
Let . Find .
Step 1.1.1
Differentiate .
Step 1.1.2
Differentiate.
Step 1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3
Evaluate .
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
The derivative of with respect to is .
Step 1.1.3.3
Multiply by .
Step 1.1.4
Subtract from .
Step 1.2
Rewrite the problem using and .
Step 2
Step 2.1
Move the negative in front of the fraction.
Step 2.2
Combine and .
Step 3
Since is constant with respect to , move out of the integral.
Step 4
Since is constant with respect to , move out of the integral.
Step 5
Use to rewrite as .
Step 6
By the Power Rule, the integral of with respect to is .
Step 7
Step 7.1
Rewrite as .
Step 7.2
Simplify.
Step 7.2.1
Multiply by .
Step 7.2.2
Multiply by .
Step 8
Replace all occurrences of with .