Calculus Examples

Evaluate the Integral square root of 2 integral from -pi/6 to pi/6 of sec(y)^2 with respect to y
2π6-π6sec2(y)dy2π6π6sec2(y)dy
Step 1
Since the derivative of tan(y)tan(y) is sec2(y)sec2(y), the integral of sec2(y)sec2(y) is tan(y)tan(y).
2tan(y)]π6-π62tan(y)]π6π6
Step 2
Simplify the answer.
Tap for more steps...
Step 2.1
Evaluate tan(y)tan(y) at π6π6 and at -π6π6.
2(tan(π6)-tan(-π6))2(tan(π6)tan(π6))
Step 2.2
The exact value of tan(π6)tan(π6) is 3333.
2(33-tan(-π6))2(33tan(π6))
Step 2.3
Simplify.
Tap for more steps...
Step 2.3.1
Add full rotations of 2π2π until the angle is greater than or equal to 00 and less than 2π2π.
2(33-tan(11π6))2(33tan(11π6))
Step 2.3.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the fourth quadrant.
2(33--tan(π6))2(33tan(π6))
Step 2.3.3
The exact value of tan(π6)tan(π6) is 3333.
2(33--33)2(3333)
Step 2.3.4
Multiply --3333.
Tap for more steps...
Step 2.3.4.1
Multiply -11 by -11.
2(33+133)2(33+133)
Step 2.3.4.2
Multiply 33 by 1.
2(33+33)
2(33+33)
Step 2.3.5
Combine the numerators over the common denominator.
23+33
Step 2.3.6
Add 3 and 3.
2233
Step 2.3.7
Multiply 2233.
Tap for more steps...
Step 2.3.7.1
Combine 2 and 233.
2(23)3
Step 2.3.7.2
Combine using the product rule for radicals.
2233
Step 2.3.7.3
Multiply 2 by 3.
263
263
263
263
Step 3
The result can be shown in multiple forms.
Exact Form:
263
Decimal Form:
1.63299316
 [x2  12  π  xdx ]