Enter a problem...
Calculus Examples
√2∫π6-π6sec2(y)dy√2∫π6−π6sec2(y)dy
Step 1
Since the derivative of tan(y)tan(y) is sec2(y)sec2(y), the integral of sec2(y)sec2(y) is tan(y)tan(y).
√2tan(y)]π6-π6√2tan(y)]π6−π6
Step 2
Step 2.1
Evaluate tan(y)tan(y) at π6π6 and at -π6−π6.
√2(tan(π6)-tan(-π6))√2(tan(π6)−tan(−π6))
Step 2.2
The exact value of tan(π6)tan(π6) is √33√33.
√2(√33-tan(-π6))√2(√33−tan(−π6))
Step 2.3
Simplify.
Step 2.3.1
Add full rotations of 2π2π until the angle is greater than or equal to 00 and less than 2π2π.
√2(√33-tan(11π6))√2(√33−tan(11π6))
Step 2.3.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the fourth quadrant.
√2(√33--tan(π6))√2(√33−−tan(π6))
Step 2.3.3
The exact value of tan(π6)tan(π6) is √33√33.
√2(√33--√33)√2(√33−−√33)
Step 2.3.4
Multiply --√33−−√33.
Step 2.3.4.1
Multiply -1−1 by -1−1.
√2(√33+1√33)√2(√33+1√33)
Step 2.3.4.2
Multiply √33 by 1.
√2(√33+√33)
√2(√33+√33)
Step 2.3.5
Combine the numerators over the common denominator.
√2√3+√33
Step 2.3.6
Add √3 and √3.
√22√33
Step 2.3.7
Multiply √22√33.
Step 2.3.7.1
Combine √2 and 2√33.
√2(2√3)3
Step 2.3.7.2
Combine using the product rule for radicals.
2√2⋅33
Step 2.3.7.3
Multiply 2 by 3.
2√63
2√63
2√63
2√63
Step 3
The result can be shown in multiple forms.
Exact Form:
2√63
Decimal Form:
1.63299316…