Calculus Examples

Evaluate the Integral integral from 0 to pi of sin(2x)^2 with respect to x
Step 1
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 1.1
Let . Find .
Tap for more steps...
Step 1.1.1
Differentiate .
Step 1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3
Differentiate using the Power Rule which states that is where .
Step 1.1.4
Multiply by .
Step 1.2
Substitute the lower limit in for in .
Step 1.3
Multiply by .
Step 1.4
Substitute the upper limit in for in .
Step 1.5
The values found for and will be used to evaluate the definite integral.
Step 1.6
Rewrite the problem using , , and the new limits of integration.
Step 2
Combine and .
Step 3
Since is constant with respect to , move out of the integral.
Step 4
Use the half-angle formula to rewrite as .
Step 5
Since is constant with respect to , move out of the integral.
Step 6
Simplify.
Tap for more steps...
Step 6.1
Multiply by .
Step 6.2
Multiply by .
Step 7
Split the single integral into multiple integrals.
Step 8
Apply the constant rule.
Step 9
Since is constant with respect to , move out of the integral.
Step 10
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 10.1
Let . Find .
Tap for more steps...
Step 10.1.1
Differentiate .
Step 10.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 10.1.3
Differentiate using the Power Rule which states that is where .
Step 10.1.4
Multiply by .
Step 10.2
Substitute the lower limit in for in .
Step 10.3
Multiply by .
Step 10.4
Substitute the upper limit in for in .
Step 10.5
Multiply by .
Step 10.6
The values found for and will be used to evaluate the definite integral.
Step 10.7
Rewrite the problem using , , and the new limits of integration.
Step 11
Combine and .
Step 12
Since is constant with respect to , move out of the integral.
Step 13
The integral of with respect to is .
Step 14
Substitute and simplify.
Tap for more steps...
Step 14.1
Evaluate at and at .
Step 14.2
Evaluate at and at .
Step 14.3
Add and .
Step 15
Simplify.
Tap for more steps...
Step 15.1
The exact value of is .
Step 15.2
Multiply by .
Step 15.3
Add and .
Step 15.4
Combine and .
Step 16
Simplify.
Tap for more steps...
Step 16.1
Simplify the numerator.
Tap for more steps...
Step 16.1.1
Subtract full rotations of until the angle is greater than or equal to and less than .
Step 16.1.2
The exact value of is .
Step 16.2
Divide by .
Step 16.3
Multiply by .
Step 16.4
Add and .
Step 16.5
Cancel the common factor of .
Tap for more steps...
Step 16.5.1
Factor out of .
Step 16.5.2
Factor out of .
Step 16.5.3
Cancel the common factor.
Step 16.5.4
Rewrite the expression.
Step 16.6
Combine and .
Step 17
The result can be shown in multiple forms.
Exact Form:
Decimal Form: