Enter a problem...
Calculus Examples
∫4x19tdt
Step 1
Since 9 is constant with respect to t, move 9 out of the integral.
9∫4x11tdt
Step 2
The integral of 1t with respect to t is ln(|t|).
9(ln(|t|)]4x1)
Step 3
Step 3.1
Evaluate ln(|t|) at 4x and at 1.
9(ln(|4x|)-ln(|1|))
Step 3.2
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
9ln(|4x||1|)
Step 3.3
Reorder terms.
9ln(1|1||4x|)
9ln(1|1||4x|)
Step 4
Step 4.1
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
9ln(11|4x|)
Step 4.2
Divide 1 by 1.
9ln(1|4x|)
Step 4.3
Multiply |4x| by 1.
9ln(|4x|)
Step 4.4
Remove non-negative terms from the absolute value.
9ln(4|x|)
9ln(4|x|)