Calculus Examples

Evaluate (10000(0.06)(1+0.06/12)^(12(6)))/(12(1+0.06/12)^(12(6))-12)
10000(0.06)(1+0.0612)12(6)12(1+0.0612)12(6)-1210000(0.06)(1+0.0612)12(6)12(1+0.0612)12(6)12
Step 1
Cancel the common factor of 1000010000 and 12(1+0.0612)12(6)-1212(1+0.0612)12(6)12.
Tap for more steps...
Step 1.1
Factor 44 out of 10000(0.06)(1+0.0612)12(6)10000(0.06)(1+0.0612)12(6).
4(25000.06(1+0.0612)12(6))12(1+0.0612)12(6)-124(25000.06(1+0.0612)12(6))12(1+0.0612)12(6)12
Step 1.2
Cancel the common factors.
Tap for more steps...
Step 1.2.1
Factor 44 out of 12(1+0.0612)12(6)12(1+0.0612)12(6).
4(25000.06(1+0.0612)12(6))4(3(1+0.0612)12(6))-124(25000.06(1+0.0612)12(6))4(3(1+0.0612)12(6))12
Step 1.2.2
Factor 44 out of -1212.
4(25000.06(1+0.0612)12(6))4(3(1+0.0612)12(6))+4(-3)4(25000.06(1+0.0612)12(6))4(3(1+0.0612)12(6))+4(3)
Step 1.2.3
Factor 44 out of 4(3(1+0.0612)12(6))+4(-3)4(3(1+0.0612)12(6))+4(3).
4(25000.06(1+0.0612)12(6))4(3(1+0.0612)12(6)-3)4(25000.06(1+0.0612)12(6))4(3(1+0.0612)12(6)3)
Step 1.2.4
Cancel the common factor.
4(25000.06(1+0.0612)12(6))4(3(1+0.0612)12(6)-3)
Step 1.2.5
Rewrite the expression.
25000.06(1+0.0612)12(6)3(1+0.0612)12(6)-3
25000.06(1+0.0612)12(6)3(1+0.0612)12(6)-3
25000.06(1+0.0612)12(6)3(1+0.0612)12(6)-3
Step 2
Simplify the numerator.
Tap for more steps...
Step 2.1
Multiply 2500 by 0.06.
150(1+0.0612)12(6)3(1+0.0612)12(6)-3
Step 2.2
Multiply 150 by (1+0.0612)12(6).
214.806641773(1+0.0612)12(6)-3
214.806641773(1+0.0612)12(6)-3
Step 3
Simplify the denominator.
Tap for more steps...
Step 3.1
Divide 0.06 by 12.
214.806641773(1+0.005)12(6)-3
Step 3.2
Add 1 and 0.005.
214.8066417731.00512(6)-3
Step 3.3
Multiply 12 by 6.
214.8066417731.00572-3
Step 3.4
Raise 1.005 to the power of 72.
214.8066417731.43204427-3
Step 3.5
Multiply 3 by 1.43204427.
214.806641774.29613283-3
Step 3.6
Subtract 3 from 4.29613283.
214.806641771.29613283
214.806641771.29613283
Step 4
Divide 214.80664177 by 1.29613283.
165.72887893
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]