Enter a problem...
Calculus Examples
x2y2-9x2-4y2=0
Step 1
Step 1.1
Add 9x2 to both sides of the equation.
x2y2-4y2=9x2
Step 1.2
Factor y2 out of x2y2-4y2.
Step 1.2.1
Factor y2 out of x2y2.
y2x2-4y2=9x2
Step 1.2.2
Factor y2 out of -4y2.
y2x2+y2⋅-4=9x2
Step 1.2.3
Factor y2 out of y2x2+y2⋅-4.
y2(x2-4)=9x2
y2(x2-4)=9x2
Step 1.3
Rewrite 4 as 22.
y2(x2-22)=9x2
Step 1.4
Factor.
Step 1.4.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=x and b=2.
y2((x+2)(x-2))=9x2
Step 1.4.2
Remove unnecessary parentheses.
y2(x+2)(x-2)=9x2
y2(x+2)(x-2)=9x2
Step 1.5
Divide each term in y2(x+2)(x-2)=9x2 by (x+2)(x-2) and simplify.
Step 1.5.1
Divide each term in y2(x+2)(x-2)=9x2 by (x+2)(x-2).
y2(x+2)(x-2)(x+2)(x-2)=9x2(x+2)(x-2)
Step 1.5.2
Simplify the left side.
Step 1.5.2.1
Cancel the common factor of x+2.
Step 1.5.2.1.1
Cancel the common factor.
y2(x+2)(x-2)(x+2)(x-2)=9x2(x+2)(x-2)
Step 1.5.2.1.2
Rewrite the expression.
y2(x-2)x-2=9x2(x+2)(x-2)
y2(x-2)x-2=9x2(x+2)(x-2)
Step 1.5.2.2
Cancel the common factor of x-2.
Step 1.5.2.2.1
Cancel the common factor.
y2(x-2)x-2=9x2(x+2)(x-2)
Step 1.5.2.2.2
Divide y2 by 1.
y2=9x2(x+2)(x-2)
y2=9x2(x+2)(x-2)
y2=9x2(x+2)(x-2)
y2=9x2(x+2)(x-2)
Step 1.6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=±√9x2(x+2)(x-2)
Step 1.7
Simplify ±√9x2(x+2)(x-2).
Step 1.7.1
Rewrite √9x2(x+2)(x-2) as √9x2√(x+2)(x-2).
y=±√9x2√(x+2)(x-2)
Step 1.7.2
Simplify the numerator.
Step 1.7.2.1
Rewrite 9x2 as (3x)2.
y=±√(3x)2√(x+2)(x-2)
Step 1.7.2.2
Pull terms out from under the radical, assuming positive real numbers.
y=±3x√(x+2)(x-2)
y=±3x√(x+2)(x-2)
Step 1.7.3
Multiply 3x√(x+2)(x-2) by √(x+2)(x-2)√(x+2)(x-2).
y=±3x√(x+2)(x-2)⋅√(x+2)(x-2)√(x+2)(x-2)
Step 1.7.4
Combine and simplify the denominator.
Step 1.7.4.1
Multiply 3x√(x+2)(x-2) by √(x+2)(x-2)√(x+2)(x-2).
y=±3x√(x+2)(x-2)√(x+2)(x-2)√(x+2)(x-2)
Step 1.7.4.2
Raise √(x+2)(x-2) to the power of 1.
y=±3x√(x+2)(x-2)√(x+2)(x-2)1√(x+2)(x-2)
Step 1.7.4.3
Raise √(x+2)(x-2) to the power of 1.
y=±3x√(x+2)(x-2)√(x+2)(x-2)1√(x+2)(x-2)1
Step 1.7.4.4
Use the power rule aman=am+n to combine exponents.
y=±3x√(x+2)(x-2)√(x+2)(x-2)1+1
Step 1.7.4.5
Add 1 and 1.
y=±3x√(x+2)(x-2)√(x+2)(x-2)2
Step 1.7.4.6
Rewrite √(x+2)(x-2)2 as (x+2)(x-2).
Step 1.7.4.6.1
Use n√ax=axn to rewrite √(x+2)(x-2) as ((x+2)(x-2))12.
y=±3x√(x+2)(x-2)(((x+2)(x-2))12)2
Step 1.7.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
y=±3x√(x+2)(x-2)((x+2)(x-2))12⋅2
Step 1.7.4.6.3
Combine 12 and 2.
y=±3x√(x+2)(x-2)((x+2)(x-2))22
Step 1.7.4.6.4
Cancel the common factor of 2.
Step 1.7.4.6.4.1
Cancel the common factor.
y=±3x√(x+2)(x-2)((x+2)(x-2))22
Step 1.7.4.6.4.2
Rewrite the expression.
y=±3x√(x+2)(x-2)((x+2)(x-2))1
y=±3x√(x+2)(x-2)((x+2)(x-2))1
Step 1.7.4.6.5
Simplify.
y=±3x√(x+2)(x-2)(x+2)(x-2)
y=±3x√(x+2)(x-2)(x+2)(x-2)
y=±3x√(x+2)(x-2)(x+2)(x-2)
y=±3x√(x+2)(x-2)(x+2)(x-2)
Step 1.8
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.8.1
First, use the positive value of the ± to find the first solution.
y=3x√(x+2)(x-2)(x+2)(x-2)
Step 1.8.2
Next, use the negative value of the ± to find the second solution.
y=-3x√(x+2)(x-2)(x+2)(x-2)
Step 1.8.3
The complete solution is the result of both the positive and negative portions of the solution.
y=3x√(x+2)(x-2)(x+2)(x-2)
y=-3x√(x+2)(x-2)(x+2)(x-2)
y=3x√(x+2)(x-2)(x+2)(x-2)
y=-3x√(x+2)(x-2)(x+2)(x-2)
y=3x√(x+2)(x-2)(x+2)(x-2)
y=-3x√(x+2)(x-2)(x+2)(x-2)
Step 2
Set each solution of y as a function of x.
y=3x√(x+2)(x-2)(x+2)(x-2)→f(x)=3x√(x+2)(x-2)(x+2)(x-2)
y=-3x√(x+2)(x-2)(x+2)(x-2)→f(x)=-3x√(x+2)(x-2)(x+2)(x-2)
Step 3
Step 3.1
Differentiate both sides of the equation.
ddx(x2y2-9x2-4y2)=ddx(0)
Step 3.2
Differentiate the left side of the equation.
Step 3.2.1
By the Sum Rule, the derivative of x2y2-9x2-4y2 with respect to x is ddx[x2y2]+ddx[-9x2]+ddx[-4y2].
ddx[x2y2]+ddx[-9x2]+ddx[-4y2]
Step 3.2.2
Evaluate ddx[x2y2].
Step 3.2.2.1
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x2 and g(x)=y2.
x2ddx[y2]+y2ddx[x2]+ddx[-9x2]+ddx[-4y2]
Step 3.2.2.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=y.
Step 3.2.2.2.1
To apply the Chain Rule, set u1 as y.
x2(ddu1[u12]ddx[y])+y2ddx[x2]+ddx[-9x2]+ddx[-4y2]
Step 3.2.2.2.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=2.
x2(2u1ddx[y])+y2ddx[x2]+ddx[-9x2]+ddx[-4y2]
Step 3.2.2.2.3
Replace all occurrences of u1 with y.
x2(2yddx[y])+y2ddx[x2]+ddx[-9x2]+ddx[-4y2]
x2(2yddx[y])+y2ddx[x2]+ddx[-9x2]+ddx[-4y2]
Step 3.2.2.3
Rewrite ddx[y] as y′.
x2(2yy′)+y2ddx[x2]+ddx[-9x2]+ddx[-4y2]
Step 3.2.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x2(2yy′)+y2(2x)+ddx[-9x2]+ddx[-4y2]
Step 3.2.2.5
Move 2 to the left of x2.
2⋅x2yy′+y2(2x)+ddx[-9x2]+ddx[-4y2]
Step 3.2.2.6
Move 2 to the left of y2.
2x2yy′+2y2x+ddx[-9x2]+ddx[-4y2]
2x2yy′+2y2x+ddx[-9x2]+ddx[-4y2]
Step 3.2.3
Evaluate ddx[-9x2].
Step 3.2.3.1
Since -9 is constant with respect to x, the derivative of -9x2 with respect to x is -9ddx[x2].
2x2yy′+2y2x-9ddx[x2]+ddx[-4y2]
Step 3.2.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
2x2yy′+2y2x-9(2x)+ddx[-4y2]
Step 3.2.3.3
Multiply 2 by -9.
2x2yy′+2y2x-18x+ddx[-4y2]
2x2yy′+2y2x-18x+ddx[-4y2]
Step 3.2.4
Evaluate ddx[-4y2].
Step 3.2.4.1
Since -4 is constant with respect to x, the derivative of -4y2 with respect to x is -4ddx[y2].
2x2yy′+2y2x-18x-4ddx[y2]
Step 3.2.4.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=y.
Step 3.2.4.2.1
To apply the Chain Rule, set u2 as y.
2x2yy′+2y2x-18x-4(ddu2[u22]ddx[y])
Step 3.2.4.2.2
Differentiate using the Power Rule which states that ddu2[u2n] is nu2n-1 where n=2.
2x2yy′+2y2x-18x-4(2u2ddx[y])
Step 3.2.4.2.3
Replace all occurrences of u2 with y.
2x2yy′+2y2x-18x-4(2yddx[y])
2x2yy′+2y2x-18x-4(2yddx[y])
Step 3.2.4.3
Rewrite ddx[y] as y′.
2x2yy′+2y2x-18x-4(2yy′)
Step 3.2.4.4
Multiply 2 by -4.
2x2yy′+2y2x-18x-8yy′
2x2yy′+2y2x-18x-8yy′
Step 3.2.5
Reorder terms.
2x2yy′+2y2x-8yy′-18x
2x2yy′+2y2x-8yy′-18x
Step 3.3
Since 0 is constant with respect to x, the derivative of 0 with respect to x is 0.
0
Step 3.4
Reform the equation by setting the left side equal to the right side.
2x2yy′+2y2x-8yy′-18x=0
Step 3.5
Solve for y′.
Step 3.5.1
Move all terms not containing y′ to the right side of the equation.
Step 3.5.1.1
Subtract 2y2x from both sides of the equation.
2x2yy′-8yy′-18x=-2y2x
Step 3.5.1.2
Add 18x to both sides of the equation.
2x2yy′-8yy′=-2y2x+18x
2x2yy′-8yy′=-2y2x+18x
Step 3.5.2
Factor 2yy′ out of 2x2yy′-8yy′.
Step 3.5.2.1
Factor 2yy′ out of 2x2yy′.
2yy′x2-8yy′=-2y2x+18x
Step 3.5.2.2
Factor 2yy′ out of -8yy′.
2yy′x2+2yy′⋅-4=-2y2x+18x
Step 3.5.2.3
Factor 2yy′ out of 2yy′x2+2yy′⋅-4.
2yy′(x2-4)=-2y2x+18x
2yy′(x2-4)=-2y2x+18x
Step 3.5.3
Rewrite 4 as 22.
2yy′(x2-22)=-2y2x+18x
Step 3.5.4
Factor.
Step 3.5.4.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=x and b=2.
2yy′((x+2)(x-2))=-2y2x+18x
Step 3.5.4.2
Remove unnecessary parentheses.
2yy′(x+2)(x-2)=-2y2x+18x
2yy′(x+2)(x-2)=-2y2x+18x
Step 3.5.5
Divide each term in 2yy′(x+2)(x-2)=-2y2x+18x by 2y(x+2)(x-2) and simplify.
Step 3.5.5.1
Divide each term in 2yy′(x+2)(x-2)=-2y2x+18x by 2y(x+2)(x-2).
2yy′(x+2)(x-2)2y(x+2)(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2
Simplify the left side.
Step 3.5.5.2.1
Cancel the common factor of 2.
Step 3.5.5.2.1.1
Cancel the common factor.
2yy′(x+2)(x-2)2y(x+2)(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2.1.2
Rewrite the expression.
yy′(x+2)(x-2)(y(x+2))(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
yy′(x+2)(x-2)(y(x+2))(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2.2
Cancel the common factor of y.
Step 3.5.5.2.2.1
Cancel the common factor.
yy′(x+2)(x-2)y(x+2)(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2.2.2
Rewrite the expression.
y′(x+2)(x-2)(x+2)(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
y′(x+2)(x-2)(x+2)(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2.3
Cancel the common factor of x+2.
Step 3.5.5.2.3.1
Cancel the common factor.
y′(x+2)(x-2)(x+2)(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2.3.2
Rewrite the expression.
y′(x-2)x-2=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
y′(x-2)x-2=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2.4
Cancel the common factor of x-2.
Step 3.5.5.2.4.1
Cancel the common factor.
y′(x-2)x-2=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2.4.2
Divide y′ by 1.
y′=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
y′=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
y′=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.3
Simplify the right side.
Step 3.5.5.3.1
Simplify each term.
Step 3.5.5.3.1.1
Cancel the common factor of -2 and 2.
Step 3.5.5.3.1.1.1
Factor 2 out of -2y2x.
y′=2(-y2x)2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.3.1.1.2
Cancel the common factors.
Step 3.5.5.3.1.1.2.1
Factor 2 out of 2y(x+2)(x-2).
y′=2(-y2x)2((y(x+2))(x-2))+18x2y(x+2)(x-2)
Step 3.5.5.3.1.1.2.2
Cancel the common factor.
y′=2(-y2x)2((y(x+2))(x-2))+18x2y(x+2)(x-2)
Step 3.5.5.3.1.1.2.3
Rewrite the expression.
y′=-y2x(y(x+2))(x-2)+18x2y(x+2)(x-2)
y′=-y2x(y(x+2))(x-2)+18x2y(x+2)(x-2)
y′=-y2x(y(x+2))(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.3.1.2
Cancel the common factor of y2 and y.
Step 3.5.5.3.1.2.1
Factor y out of -y2x.
y′=y(-yx)(y(x+2))(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.3.1.2.2
Cancel the common factors.
Step 3.5.5.3.1.2.2.1
Factor y out of (y(x+2))(x-2).
y′=y(-yx)y((x+2)(x-2))+18x2y(x+2)(x-2)
Step 3.5.5.3.1.2.2.2
Cancel the common factor.
y′=y(-yx)y((x+2)(x-2))+18x2y(x+2)(x-2)
Step 3.5.5.3.1.2.2.3
Rewrite the expression.
y′=-yx(x+2)(x-2)+18x2y(x+2)(x-2)
y′=-yx(x+2)(x-2)+18x2y(x+2)(x-2)
y′=-yx(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.3.1.3
Move the negative in front of the fraction.
y′=-yx(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.3.1.4
Cancel the common factor of 18 and 2.
Step 3.5.5.3.1.4.1
Factor 2 out of 18x.
y′=-yx(x+2)(x-2)+2(9x)2y(x+2)(x-2)
Step 3.5.5.3.1.4.2
Cancel the common factors.
Step 3.5.5.3.1.4.2.1
Factor 2 out of 2y(x+2)(x-2).
y′=-yx(x+2)(x-2)+2(9x)2((y(x+2))(x-2))
Step 3.5.5.3.1.4.2.2
Cancel the common factor.
y′=-yx(x+2)(x-2)+2(9x)2((y(x+2))(x-2))
Step 3.5.5.3.1.4.2.3
Rewrite the expression.
y′=-yx(x+2)(x-2)+9x(y(x+2))(x-2)
y′=-yx(x+2)(x-2)+9x(y(x+2))(x-2)
y′=-yx(x+2)(x-2)+9xy(x+2)(x-2)
y′=-yx(x+2)(x-2)+9xy(x+2)(x-2)
y′=-yx(x+2)(x-2)+9xy(x+2)(x-2)
y′=-yx(x+2)(x-2)+9xy(x+2)(x-2)
y′=-yx(x+2)(x-2)+9xy(x+2)(x-2)
Step 3.6
Replace y′ with dydx.
dydx=-yx(x+2)(x-2)+9xy(x+2)(x-2)
dydx=-yx(x+2)(x-2)+9xy(x+2)(x-2)
Step 4
Step 4.1
Find the LCD of the terms in the equation.
Step 4.1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
(x+2)(x-2),y(x+2)(x-2),1
Step 4.1.2
Since (x+2)(x-2),y(x+2)(x-2),1 contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
Steps to find the LCM for (x+2)(x-2),y(x+2)(x-2),1 are:
1. Find the LCM for the numeric part 1,1,1.
2. Find the LCM for the variable part y1.
3. Find the LCM for the compound variable part x+2,x-2,x+2,x-2.
4. Multiply each LCM together.
Step 4.1.3
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 4.1.4
The number 1 is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 4.1.5
The LCM of 1,1,1 is the result of multiplying all prime factors the greatest number of times they occur in either number.
1
Step 4.1.6
The factor for y1 is y itself.
y1=y
y occurs 1 time.
Step 4.1.7
The LCM of y1 is the result of multiplying all prime factors the greatest number of times they occur in either term.
y
Step 4.1.8
The factor for x+2 is x+2 itself.
(x+2)=x+2
(x+2) occurs 1 time.
Step 4.1.9
The factor for x-2 is x-2 itself.
(x-2)=x-2
(x-2) occurs 1 time.
Step 4.1.10
The factor for x+2 is x+2 itself.
(x+2)=x+2
(x+2) occurs 1 time.
Step 4.1.11
The factor for x-2 is x-2 itself.
(x-2)=x-2
(x-2) occurs 1 time.
Step 4.1.12
The LCM of x+2,x-2,x+2,x-2 is the result of multiplying all factors the greatest number of times they occur in either term.
(x+2)(x-2)
Step 4.1.13
The Least Common Multiple LCM of some numbers is the smallest number that the numbers are factors of.
y(x+2)(x-2)
y(x+2)(x-2)
Step 4.2
Multiply each term in -yx(x+2)(x-2)+9xy(x+2)(x-2)=0 by y(x+2)(x-2) to eliminate the fractions.
Step 4.2.1
Multiply each term in -yx(x+2)(x-2)+9xy(x+2)(x-2)=0 by y(x+2)(x-2).
-yx(x+2)(x-2)(y(x+2)(x-2))+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2
Simplify the left side.
Step 4.2.2.1
Simplify each term.
Step 4.2.2.1.1
Cancel the common factor of (x+2)(x-2).
Step 4.2.2.1.1.1
Move the leading negative in -yx(x+2)(x-2) into the numerator.
-yx(x+2)(x-2)(y(x+2)(x-2))+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.1.2
Factor (x+2)(x-2) out of y(x+2)(x-2).
-yx(x+2)(x-2)((x+2)(x-2)(y))+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.1.3
Cancel the common factor.
-yx(x+2)(x-2)((x+2)(x-2)y)+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.1.4
Rewrite the expression.
-yxy+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
-yxy+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.2
Raise y to the power of 1.
-1x(y1y)+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.3
Raise y to the power of 1.
-1x(y1y1)+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.4
Use the power rule aman=am+n to combine exponents.
-1xy1+1+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.5
Add 1 and 1.
-1xy2+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.6
Rewrite -1x as -x.
-xy2+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.7
Cancel the common factor of y(x+2)(x-2).
Step 4.2.2.1.7.1
Cancel the common factor.
-xy2+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.7.2
Rewrite the expression.
-xy2+9x=0(y(x+2)(x-2))
-xy2+9x=0(y(x+2)(x-2))
-xy2+9x=0(y(x+2)(x-2))
-xy2+9x=0(y(x+2)(x-2))
Step 4.2.3
Simplify the right side.
Step 4.2.3.1
Simplify by multiplying through.
Step 4.2.3.1.1
Apply the distributive property.
-xy2+9x=0((yx+y⋅2)(x-2))
Step 4.2.3.1.2
Move 2 to the left of y.
-xy2+9x=0((yx+2⋅y)(x-2))
-xy2+9x=0((yx+2⋅y)(x-2))
Step 4.2.3.2
Expand (yx+2y)(x-2) using the FOIL Method.
Step 4.2.3.2.1
Apply the distributive property.
-xy2+9x=0(yx(x-2)+2y(x-2))
Step 4.2.3.2.2
Apply the distributive property.
-xy2+9x=0(yx⋅x+yx⋅-2+2y(x-2))
Step 4.2.3.2.3
Apply the distributive property.
-xy2+9x=0(yx⋅x+yx⋅-2+2yx+2y⋅-2)
-xy2+9x=0(yx⋅x+yx⋅-2+2yx+2y⋅-2)
Step 4.2.3.3
Simplify terms.
Step 4.2.3.3.1
Combine the opposite terms in yx⋅x+yx⋅-2+2yx+2y⋅-2.
Step 4.2.3.3.1.1
Reorder the factors in the terms yx⋅-2 and 2yx.
-xy2+9x=0(yx⋅x-2xy+2xy+2y⋅-2)
Step 4.2.3.3.1.2
Add -2xy and 2xy.
-xy2+9x=0(yx⋅x+0+2y⋅-2)
Step 4.2.3.3.1.3
Add yx⋅x and 0.
-xy2+9x=0(yx⋅x+2y⋅-2)
-xy2+9x=0(yx⋅x+2y⋅-2)
Step 4.2.3.3.2
Simplify each term.
Step 4.2.3.3.2.1
Multiply x by x by adding the exponents.
Step 4.2.3.3.2.1.1
Move x.
-xy2+9x=0(y(x⋅x)+2y⋅-2)
Step 4.2.3.3.2.1.2
Multiply x by x.
-xy2+9x=0(yx2+2y⋅-2)
-xy2+9x=0(yx2+2y⋅-2)
Step 4.2.3.3.2.2
Multiply -2 by 2.
-xy2+9x=0(yx2-4y)
-xy2+9x=0(yx2-4y)
Step 4.2.3.3.3
Multiply 0 by yx2-4y.
-xy2+9x=0
-xy2+9x=0
-xy2+9x=0
-xy2+9x=0
Step 4.3
Solve the equation.
Step 4.3.1
Factor x out of -xy2+9x.
Step 4.3.1.1
Factor x out of -xy2.
x(-1y2)+9x=0
Step 4.3.1.2
Factor x out of 9x.
x(-1y2)+x⋅9=0
Step 4.3.1.3
Factor x out of x(-1y2)+x⋅9.
x(-1y2+9)=0
x(-1y2+9)=0
Step 4.3.2
Rewrite 9 as 32.
x(-1y2+32)=0
Step 4.3.3
Reorder -1y2 and 32.
x(32-1y2)=0
Step 4.3.4
Factor.
Step 4.3.4.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=3 and b=y.
x((3+y)(3-y))=0
Step 4.3.4.2
Remove unnecessary parentheses.
x(3+y)(3-y)=0
x(3+y)(3-y)=0
Step 4.3.5
Divide each term in x(3+y)(3-y)=0 by (3+y)(3-y) and simplify.
Step 4.3.5.1
Divide each term in x(3+y)(3-y)=0 by (3+y)(3-y).
x(3+y)(3-y)(3+y)(3-y)=0(3+y)(3-y)
Step 4.3.5.2
Simplify the left side.
Step 4.3.5.2.1
Cancel the common factor of 3+y.
Step 4.3.5.2.1.1
Cancel the common factor.
x(3+y)(3-y)(3+y)(3-y)=0(3+y)(3-y)
Step 4.3.5.2.1.2
Rewrite the expression.
x(3-y)3-y=0(3+y)(3-y)
x(3-y)3-y=0(3+y)(3-y)
Step 4.3.5.2.2
Cancel the common factor of 3-y.
Step 4.3.5.2.2.1
Cancel the common factor.
x(3-y)3-y=0(3+y)(3-y)
Step 4.3.5.2.2.2
Divide x by 1.
x=0(3+y)(3-y)
x=0(3+y)(3-y)
x=0(3+y)(3-y)
Step 4.3.5.3
Simplify the right side.
Step 4.3.5.3.1
Divide 0 by (3+y)(3-y).
x=0
x=0
x=0
x=0
x=0
Step 5
Step 5.1
Replace the variable x with 0 in the expression.
f(0)=3(0)√((0)+2)((0)-2)((0)+2)((0)-2)
Step 5.2
Simplify the result.
Step 5.2.1
Reduce the expression by cancelling the common factors.
Step 5.2.1.1
Cancel the common factor of 0 and (0)+2.
Step 5.2.1.1.1
Factor 2 out of 3(0)√((0)+2)((0)-2).
f(0)=2(3⋅((0)√((0)+2)((0)-2)))((0)+2)((0)-2)
Step 5.2.1.1.2
Cancel the common factors.
Step 5.2.1.1.2.1
Factor 2 out of ((0)+2)((0)-2).
f(0)=2(3⋅((0)√((0)+2)((0)-2)))2((0+1)((0)-2))
Step 5.2.1.1.2.2
Cancel the common factor.
f(0)=2(3⋅((0)√((0)+2)((0)-2)))2((0+1)((0)-2))
Step 5.2.1.1.2.3
Rewrite the expression.
f(0)=3⋅((0)√((0)+2)((0)-2))(0+1)((0)-2)
f(0)=3⋅((0)√((0)+2)((0)-2))(0+1)((0)-2)
f(0)=3⋅((0)√((0)+2)((0)-2))(0+1)((0)-2)
Step 5.2.1.2
Cancel the common factor of 0 and (0)-2.
Step 5.2.1.2.1
Factor 2 out of 3⋅(0)√((0)+2)((0)-2).
f(0)=2(3⋅((0)√((0)+2)((0)-2)))(0+1)((0)-2)
Step 5.2.1.2.2
Cancel the common factors.
Step 5.2.1.2.2.1
Factor 2 out of (0+1)((0)-2).
f(0)=2(3⋅((0)√((0)+2)((0)-2)))2((0+1)(0-1))
Step 5.2.1.2.2.2
Cancel the common factor.
f(0)=2(3⋅((0)√((0)+2)((0)-2)))2((0+1)(0-1))
Step 5.2.1.2.2.3
Rewrite the expression.
f(0)=3⋅((0)√((0)+2)((0)-2))(0+1)(0-1)
f(0)=3⋅((0)√((0)+2)((0)-2))(0+1)(0-1)
f(0)=3⋅((0)√((0)+2)((0)-2))(0+1)(0-1)
f(0)=3⋅((0)√((0)+2)((0)-2))(0+1)(0-1)
Step 5.2.2
Simplify the numerator.
Step 5.2.2.1
Multiply 3 by 0.
f(0)=0√(0+2)(0-2)(0+1)(0-1)
Step 5.2.2.2
Multiply 0 by √(0+2)(0-2).
f(0)=0(0+1)(0-1)
f(0)=0(0+1)(0-1)
Step 5.2.3
Simplify the denominator.
Step 5.2.3.1
Rewrite 0 as -1(0).
f(0)=0(-1⋅0+1)(0-1)
Step 5.2.3.2
Rewrite 1 as -1(-1).
f(0)=0(-1⋅0-1⋅-1)(0-1)
Step 5.2.3.3
Factor -1 out of -1⋅0-1⋅-1.
f(0)=0-1⋅((0-1)(0-1))
Step 5.2.3.4
Raise 0-1 to the power of 1.
f(0)=0-1⋅((0-1)(0-1))
Step 5.2.3.5
Raise 0-1 to the power of 1.
f(0)=0-1⋅((0-1)(0-1))
Step 5.2.3.6
Use the power rule aman=am+n to combine exponents.
f(0)=0-1⋅(0-1)1+1
Step 5.2.3.7
Add 1 and 1.
f(0)=0-1⋅(0-1)2
f(0)=0-1⋅(0-1)2
Step 5.2.4
Simplify the denominator.
Step 5.2.4.1
Subtract 1 from 0.
f(0)=0-1(-1)2
Step 5.2.4.2
Raise -1 to the power of 2.
f(0)=0-1⋅1
f(0)=0-1⋅1
Step 5.2.5
Simplify the expression.
Step 5.2.5.1
Multiply -1 by 1.
f(0)=0-1
Step 5.2.5.2
Divide 0 by -1.
f(0)=0
f(0)=0
Step 5.2.6
The final answer is 0.
0
0
0
Step 6
The horizontal tangent lines are y=0,y=0
y=0,y=0
Step 7