Calculus Examples

Find the Horizontal Tangent Line x^2y^2-9x^2-4y^2=0
x2y2-9x2-4y2=0
Step 1
Solve the equation as y in terms of x.
Tap for more steps...
Step 1.1
Add 9x2 to both sides of the equation.
x2y2-4y2=9x2
Step 1.2
Factor y2 out of x2y2-4y2.
Tap for more steps...
Step 1.2.1
Factor y2 out of x2y2.
y2x2-4y2=9x2
Step 1.2.2
Factor y2 out of -4y2.
y2x2+y2-4=9x2
Step 1.2.3
Factor y2 out of y2x2+y2-4.
y2(x2-4)=9x2
y2(x2-4)=9x2
Step 1.3
Rewrite 4 as 22.
y2(x2-22)=9x2
Step 1.4
Factor.
Tap for more steps...
Step 1.4.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=x and b=2.
y2((x+2)(x-2))=9x2
Step 1.4.2
Remove unnecessary parentheses.
y2(x+2)(x-2)=9x2
y2(x+2)(x-2)=9x2
Step 1.5
Divide each term in y2(x+2)(x-2)=9x2 by (x+2)(x-2) and simplify.
Tap for more steps...
Step 1.5.1
Divide each term in y2(x+2)(x-2)=9x2 by (x+2)(x-2).
y2(x+2)(x-2)(x+2)(x-2)=9x2(x+2)(x-2)
Step 1.5.2
Simplify the left side.
Tap for more steps...
Step 1.5.2.1
Cancel the common factor of x+2.
Tap for more steps...
Step 1.5.2.1.1
Cancel the common factor.
y2(x+2)(x-2)(x+2)(x-2)=9x2(x+2)(x-2)
Step 1.5.2.1.2
Rewrite the expression.
y2(x-2)x-2=9x2(x+2)(x-2)
y2(x-2)x-2=9x2(x+2)(x-2)
Step 1.5.2.2
Cancel the common factor of x-2.
Tap for more steps...
Step 1.5.2.2.1
Cancel the common factor.
y2(x-2)x-2=9x2(x+2)(x-2)
Step 1.5.2.2.2
Divide y2 by 1.
y2=9x2(x+2)(x-2)
y2=9x2(x+2)(x-2)
y2=9x2(x+2)(x-2)
y2=9x2(x+2)(x-2)
Step 1.6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=±9x2(x+2)(x-2)
Step 1.7
Simplify ±9x2(x+2)(x-2).
Tap for more steps...
Step 1.7.1
Rewrite 9x2(x+2)(x-2) as 9x2(x+2)(x-2).
y=±9x2(x+2)(x-2)
Step 1.7.2
Simplify the numerator.
Tap for more steps...
Step 1.7.2.1
Rewrite 9x2 as (3x)2.
y=±(3x)2(x+2)(x-2)
Step 1.7.2.2
Pull terms out from under the radical, assuming positive real numbers.
y=±3x(x+2)(x-2)
y=±3x(x+2)(x-2)
Step 1.7.3
Multiply 3x(x+2)(x-2) by (x+2)(x-2)(x+2)(x-2).
y=±3x(x+2)(x-2)(x+2)(x-2)(x+2)(x-2)
Step 1.7.4
Combine and simplify the denominator.
Tap for more steps...
Step 1.7.4.1
Multiply 3x(x+2)(x-2) by (x+2)(x-2)(x+2)(x-2).
y=±3x(x+2)(x-2)(x+2)(x-2)(x+2)(x-2)
Step 1.7.4.2
Raise (x+2)(x-2) to the power of 1.
y=±3x(x+2)(x-2)(x+2)(x-2)1(x+2)(x-2)
Step 1.7.4.3
Raise (x+2)(x-2) to the power of 1.
y=±3x(x+2)(x-2)(x+2)(x-2)1(x+2)(x-2)1
Step 1.7.4.4
Use the power rule aman=am+n to combine exponents.
y=±3x(x+2)(x-2)(x+2)(x-2)1+1
Step 1.7.4.5
Add 1 and 1.
y=±3x(x+2)(x-2)(x+2)(x-2)2
Step 1.7.4.6
Rewrite (x+2)(x-2)2 as (x+2)(x-2).
Tap for more steps...
Step 1.7.4.6.1
Use nax=axn to rewrite (x+2)(x-2) as ((x+2)(x-2))12.
y=±3x(x+2)(x-2)(((x+2)(x-2))12)2
Step 1.7.4.6.2
Apply the power rule and multiply exponents, (am)n=amn.
y=±3x(x+2)(x-2)((x+2)(x-2))122
Step 1.7.4.6.3
Combine 12 and 2.
y=±3x(x+2)(x-2)((x+2)(x-2))22
Step 1.7.4.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 1.7.4.6.4.1
Cancel the common factor.
y=±3x(x+2)(x-2)((x+2)(x-2))22
Step 1.7.4.6.4.2
Rewrite the expression.
y=±3x(x+2)(x-2)((x+2)(x-2))1
y=±3x(x+2)(x-2)((x+2)(x-2))1
Step 1.7.4.6.5
Simplify.
y=±3x(x+2)(x-2)(x+2)(x-2)
y=±3x(x+2)(x-2)(x+2)(x-2)
y=±3x(x+2)(x-2)(x+2)(x-2)
y=±3x(x+2)(x-2)(x+2)(x-2)
Step 1.8
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 1.8.1
First, use the positive value of the ± to find the first solution.
y=3x(x+2)(x-2)(x+2)(x-2)
Step 1.8.2
Next, use the negative value of the ± to find the second solution.
y=-3x(x+2)(x-2)(x+2)(x-2)
Step 1.8.3
The complete solution is the result of both the positive and negative portions of the solution.
y=3x(x+2)(x-2)(x+2)(x-2)
y=-3x(x+2)(x-2)(x+2)(x-2)
y=3x(x+2)(x-2)(x+2)(x-2)
y=-3x(x+2)(x-2)(x+2)(x-2)
y=3x(x+2)(x-2)(x+2)(x-2)
y=-3x(x+2)(x-2)(x+2)(x-2)
Step 2
Set each solution of y as a function of x.
y=3x(x+2)(x-2)(x+2)(x-2)f(x)=3x(x+2)(x-2)(x+2)(x-2)
y=-3x(x+2)(x-2)(x+2)(x-2)f(x)=-3x(x+2)(x-2)(x+2)(x-2)
Step 3
Because the y variable in the equation x2y2-9x2-4y2=0 has a degree greater than 1, use implicit differentiation to solve for the derivative dydx.
Tap for more steps...
Step 3.1
Differentiate both sides of the equation.
ddx(x2y2-9x2-4y2)=ddx(0)
Step 3.2
Differentiate the left side of the equation.
Tap for more steps...
Step 3.2.1
By the Sum Rule, the derivative of x2y2-9x2-4y2 with respect to x is ddx[x2y2]+ddx[-9x2]+ddx[-4y2].
ddx[x2y2]+ddx[-9x2]+ddx[-4y2]
Step 3.2.2
Evaluate ddx[x2y2].
Tap for more steps...
Step 3.2.2.1
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=x2 and g(x)=y2.
x2ddx[y2]+y2ddx[x2]+ddx[-9x2]+ddx[-4y2]
Step 3.2.2.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=y.
Tap for more steps...
Step 3.2.2.2.1
To apply the Chain Rule, set u1 as y.
x2(ddu1[u12]ddx[y])+y2ddx[x2]+ddx[-9x2]+ddx[-4y2]
Step 3.2.2.2.2
Differentiate using the Power Rule which states that ddu1[u1n] is nu1n-1 where n=2.
x2(2u1ddx[y])+y2ddx[x2]+ddx[-9x2]+ddx[-4y2]
Step 3.2.2.2.3
Replace all occurrences of u1 with y.
x2(2yddx[y])+y2ddx[x2]+ddx[-9x2]+ddx[-4y2]
x2(2yddx[y])+y2ddx[x2]+ddx[-9x2]+ddx[-4y2]
Step 3.2.2.3
Rewrite ddx[y] as y.
x2(2yy)+y2ddx[x2]+ddx[-9x2]+ddx[-4y2]
Step 3.2.2.4
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
x2(2yy)+y2(2x)+ddx[-9x2]+ddx[-4y2]
Step 3.2.2.5
Move 2 to the left of x2.
2x2yy+y2(2x)+ddx[-9x2]+ddx[-4y2]
Step 3.2.2.6
Move 2 to the left of y2.
2x2yy+2y2x+ddx[-9x2]+ddx[-4y2]
2x2yy+2y2x+ddx[-9x2]+ddx[-4y2]
Step 3.2.3
Evaluate ddx[-9x2].
Tap for more steps...
Step 3.2.3.1
Since -9 is constant with respect to x, the derivative of -9x2 with respect to x is -9ddx[x2].
2x2yy+2y2x-9ddx[x2]+ddx[-4y2]
Step 3.2.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
2x2yy+2y2x-9(2x)+ddx[-4y2]
Step 3.2.3.3
Multiply 2 by -9.
2x2yy+2y2x-18x+ddx[-4y2]
2x2yy+2y2x-18x+ddx[-4y2]
Step 3.2.4
Evaluate ddx[-4y2].
Tap for more steps...
Step 3.2.4.1
Since -4 is constant with respect to x, the derivative of -4y2 with respect to x is -4ddx[y2].
2x2yy+2y2x-18x-4ddx[y2]
Step 3.2.4.2
Differentiate using the chain rule, which states that ddx[f(g(x))] is f(g(x))g(x) where f(x)=x2 and g(x)=y.
Tap for more steps...
Step 3.2.4.2.1
To apply the Chain Rule, set u2 as y.
2x2yy+2y2x-18x-4(ddu2[u22]ddx[y])
Step 3.2.4.2.2
Differentiate using the Power Rule which states that ddu2[u2n] is nu2n-1 where n=2.
2x2yy+2y2x-18x-4(2u2ddx[y])
Step 3.2.4.2.3
Replace all occurrences of u2 with y.
2x2yy+2y2x-18x-4(2yddx[y])
2x2yy+2y2x-18x-4(2yddx[y])
Step 3.2.4.3
Rewrite ddx[y] as y.
2x2yy+2y2x-18x-4(2yy)
Step 3.2.4.4
Multiply 2 by -4.
2x2yy+2y2x-18x-8yy
2x2yy+2y2x-18x-8yy
Step 3.2.5
Reorder terms.
2x2yy+2y2x-8yy-18x
2x2yy+2y2x-8yy-18x
Step 3.3
Since 0 is constant with respect to x, the derivative of 0 with respect to x is 0.
0
Step 3.4
Reform the equation by setting the left side equal to the right side.
2x2yy+2y2x-8yy-18x=0
Step 3.5
Solve for y.
Tap for more steps...
Step 3.5.1
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 3.5.1.1
Subtract 2y2x from both sides of the equation.
2x2yy-8yy-18x=-2y2x
Step 3.5.1.2
Add 18x to both sides of the equation.
2x2yy-8yy=-2y2x+18x
2x2yy-8yy=-2y2x+18x
Step 3.5.2
Factor 2yy out of 2x2yy-8yy.
Tap for more steps...
Step 3.5.2.1
Factor 2yy out of 2x2yy.
2yyx2-8yy=-2y2x+18x
Step 3.5.2.2
Factor 2yy out of -8yy.
2yyx2+2yy-4=-2y2x+18x
Step 3.5.2.3
Factor 2yy out of 2yyx2+2yy-4.
2yy(x2-4)=-2y2x+18x
2yy(x2-4)=-2y2x+18x
Step 3.5.3
Rewrite 4 as 22.
2yy(x2-22)=-2y2x+18x
Step 3.5.4
Factor.
Tap for more steps...
Step 3.5.4.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=x and b=2.
2yy((x+2)(x-2))=-2y2x+18x
Step 3.5.4.2
Remove unnecessary parentheses.
2yy(x+2)(x-2)=-2y2x+18x
2yy(x+2)(x-2)=-2y2x+18x
Step 3.5.5
Divide each term in 2yy(x+2)(x-2)=-2y2x+18x by 2y(x+2)(x-2) and simplify.
Tap for more steps...
Step 3.5.5.1
Divide each term in 2yy(x+2)(x-2)=-2y2x+18x by 2y(x+2)(x-2).
2yy(x+2)(x-2)2y(x+2)(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2
Simplify the left side.
Tap for more steps...
Step 3.5.5.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 3.5.5.2.1.1
Cancel the common factor.
2yy(x+2)(x-2)2y(x+2)(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2.1.2
Rewrite the expression.
yy(x+2)(x-2)(y(x+2))(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
yy(x+2)(x-2)(y(x+2))(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2.2
Cancel the common factor of y.
Tap for more steps...
Step 3.5.5.2.2.1
Cancel the common factor.
yy(x+2)(x-2)y(x+2)(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2.2.2
Rewrite the expression.
y(x+2)(x-2)(x+2)(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
y(x+2)(x-2)(x+2)(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2.3
Cancel the common factor of x+2.
Tap for more steps...
Step 3.5.5.2.3.1
Cancel the common factor.
y(x+2)(x-2)(x+2)(x-2)=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2.3.2
Rewrite the expression.
y(x-2)x-2=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
y(x-2)x-2=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2.4
Cancel the common factor of x-2.
Tap for more steps...
Step 3.5.5.2.4.1
Cancel the common factor.
y(x-2)x-2=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.2.4.2
Divide y by 1.
y=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
y=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
y=-2y2x2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.3
Simplify the right side.
Tap for more steps...
Step 3.5.5.3.1
Simplify each term.
Tap for more steps...
Step 3.5.5.3.1.1
Cancel the common factor of -2 and 2.
Tap for more steps...
Step 3.5.5.3.1.1.1
Factor 2 out of -2y2x.
y=2(-y2x)2y(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.3.1.1.2
Cancel the common factors.
Tap for more steps...
Step 3.5.5.3.1.1.2.1
Factor 2 out of 2y(x+2)(x-2).
y=2(-y2x)2((y(x+2))(x-2))+18x2y(x+2)(x-2)
Step 3.5.5.3.1.1.2.2
Cancel the common factor.
y=2(-y2x)2((y(x+2))(x-2))+18x2y(x+2)(x-2)
Step 3.5.5.3.1.1.2.3
Rewrite the expression.
y=-y2x(y(x+2))(x-2)+18x2y(x+2)(x-2)
y=-y2x(y(x+2))(x-2)+18x2y(x+2)(x-2)
y=-y2x(y(x+2))(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.3.1.2
Cancel the common factor of y2 and y.
Tap for more steps...
Step 3.5.5.3.1.2.1
Factor y out of -y2x.
y=y(-yx)(y(x+2))(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.3.1.2.2
Cancel the common factors.
Tap for more steps...
Step 3.5.5.3.1.2.2.1
Factor y out of (y(x+2))(x-2).
y=y(-yx)y((x+2)(x-2))+18x2y(x+2)(x-2)
Step 3.5.5.3.1.2.2.2
Cancel the common factor.
y=y(-yx)y((x+2)(x-2))+18x2y(x+2)(x-2)
Step 3.5.5.3.1.2.2.3
Rewrite the expression.
y=-yx(x+2)(x-2)+18x2y(x+2)(x-2)
y=-yx(x+2)(x-2)+18x2y(x+2)(x-2)
y=-yx(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.3.1.3
Move the negative in front of the fraction.
y=-yx(x+2)(x-2)+18x2y(x+2)(x-2)
Step 3.5.5.3.1.4
Cancel the common factor of 18 and 2.
Tap for more steps...
Step 3.5.5.3.1.4.1
Factor 2 out of 18x.
y=-yx(x+2)(x-2)+2(9x)2y(x+2)(x-2)
Step 3.5.5.3.1.4.2
Cancel the common factors.
Tap for more steps...
Step 3.5.5.3.1.4.2.1
Factor 2 out of 2y(x+2)(x-2).
y=-yx(x+2)(x-2)+2(9x)2((y(x+2))(x-2))
Step 3.5.5.3.1.4.2.2
Cancel the common factor.
y=-yx(x+2)(x-2)+2(9x)2((y(x+2))(x-2))
Step 3.5.5.3.1.4.2.3
Rewrite the expression.
y=-yx(x+2)(x-2)+9x(y(x+2))(x-2)
y=-yx(x+2)(x-2)+9x(y(x+2))(x-2)
y=-yx(x+2)(x-2)+9xy(x+2)(x-2)
y=-yx(x+2)(x-2)+9xy(x+2)(x-2)
y=-yx(x+2)(x-2)+9xy(x+2)(x-2)
y=-yx(x+2)(x-2)+9xy(x+2)(x-2)
y=-yx(x+2)(x-2)+9xy(x+2)(x-2)
Step 3.6
Replace y with dydx.
dydx=-yx(x+2)(x-2)+9xy(x+2)(x-2)
dydx=-yx(x+2)(x-2)+9xy(x+2)(x-2)
Step 4
Set the derivative equal to 0 then solve the equation -yx(x+2)(x-2)+9xy(x+2)(x-2)=0.
Tap for more steps...
Step 4.1
Find the LCD of the terms in the equation.
Tap for more steps...
Step 4.1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
(x+2)(x-2),y(x+2)(x-2),1
Step 4.1.2
Since (x+2)(x-2),y(x+2)(x-2),1 contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
Steps to find the LCM for (x+2)(x-2),y(x+2)(x-2),1 are:
1. Find the LCM for the numeric part 1,1,1.
2. Find the LCM for the variable part y1.
3. Find the LCM for the compound variable part x+2,x-2,x+2,x-2.
4. Multiply each LCM together.
Step 4.1.3
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 4.1.4
The number 1 is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 4.1.5
The LCM of 1,1,1 is the result of multiplying all prime factors the greatest number of times they occur in either number.
1
Step 4.1.6
The factor for y1 is y itself.
y1=y
y occurs 1 time.
Step 4.1.7
The LCM of y1 is the result of multiplying all prime factors the greatest number of times they occur in either term.
y
Step 4.1.8
The factor for x+2 is x+2 itself.
(x+2)=x+2
(x+2) occurs 1 time.
Step 4.1.9
The factor for x-2 is x-2 itself.
(x-2)=x-2
(x-2) occurs 1 time.
Step 4.1.10
The factor for x+2 is x+2 itself.
(x+2)=x+2
(x+2) occurs 1 time.
Step 4.1.11
The factor for x-2 is x-2 itself.
(x-2)=x-2
(x-2) occurs 1 time.
Step 4.1.12
The LCM of x+2,x-2,x+2,x-2 is the result of multiplying all factors the greatest number of times they occur in either term.
(x+2)(x-2)
Step 4.1.13
The Least Common Multiple LCM of some numbers is the smallest number that the numbers are factors of.
y(x+2)(x-2)
y(x+2)(x-2)
Step 4.2
Multiply each term in -yx(x+2)(x-2)+9xy(x+2)(x-2)=0 by y(x+2)(x-2) to eliminate the fractions.
Tap for more steps...
Step 4.2.1
Multiply each term in -yx(x+2)(x-2)+9xy(x+2)(x-2)=0 by y(x+2)(x-2).
-yx(x+2)(x-2)(y(x+2)(x-2))+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2
Simplify the left side.
Tap for more steps...
Step 4.2.2.1
Simplify each term.
Tap for more steps...
Step 4.2.2.1.1
Cancel the common factor of (x+2)(x-2).
Tap for more steps...
Step 4.2.2.1.1.1
Move the leading negative in -yx(x+2)(x-2) into the numerator.
-yx(x+2)(x-2)(y(x+2)(x-2))+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.1.2
Factor (x+2)(x-2) out of y(x+2)(x-2).
-yx(x+2)(x-2)((x+2)(x-2)(y))+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.1.3
Cancel the common factor.
-yx(x+2)(x-2)((x+2)(x-2)y)+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.1.4
Rewrite the expression.
-yxy+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
-yxy+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.2
Raise y to the power of 1.
-1x(y1y)+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.3
Raise y to the power of 1.
-1x(y1y1)+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.4
Use the power rule aman=am+n to combine exponents.
-1xy1+1+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.5
Add 1 and 1.
-1xy2+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.6
Rewrite -1x as -x.
-xy2+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.7
Cancel the common factor of y(x+2)(x-2).
Tap for more steps...
Step 4.2.2.1.7.1
Cancel the common factor.
-xy2+9xy(x+2)(x-2)(y(x+2)(x-2))=0(y(x+2)(x-2))
Step 4.2.2.1.7.2
Rewrite the expression.
-xy2+9x=0(y(x+2)(x-2))
-xy2+9x=0(y(x+2)(x-2))
-xy2+9x=0(y(x+2)(x-2))
-xy2+9x=0(y(x+2)(x-2))
Step 4.2.3
Simplify the right side.
Tap for more steps...
Step 4.2.3.1
Simplify by multiplying through.
Tap for more steps...
Step 4.2.3.1.1
Apply the distributive property.
-xy2+9x=0((yx+y2)(x-2))
Step 4.2.3.1.2
Move 2 to the left of y.
-xy2+9x=0((yx+2y)(x-2))
-xy2+9x=0((yx+2y)(x-2))
Step 4.2.3.2
Expand (yx+2y)(x-2) using the FOIL Method.
Tap for more steps...
Step 4.2.3.2.1
Apply the distributive property.
-xy2+9x=0(yx(x-2)+2y(x-2))
Step 4.2.3.2.2
Apply the distributive property.
-xy2+9x=0(yxx+yx-2+2y(x-2))
Step 4.2.3.2.3
Apply the distributive property.
-xy2+9x=0(yxx+yx-2+2yx+2y-2)
-xy2+9x=0(yxx+yx-2+2yx+2y-2)
Step 4.2.3.3
Simplify terms.
Tap for more steps...
Step 4.2.3.3.1
Combine the opposite terms in yxx+yx-2+2yx+2y-2.
Tap for more steps...
Step 4.2.3.3.1.1
Reorder the factors in the terms yx-2 and 2yx.
-xy2+9x=0(yxx-2xy+2xy+2y-2)
Step 4.2.3.3.1.2
Add -2xy and 2xy.
-xy2+9x=0(yxx+0+2y-2)
Step 4.2.3.3.1.3
Add yxx and 0.
-xy2+9x=0(yxx+2y-2)
-xy2+9x=0(yxx+2y-2)
Step 4.2.3.3.2
Simplify each term.
Tap for more steps...
Step 4.2.3.3.2.1
Multiply x by x by adding the exponents.
Tap for more steps...
Step 4.2.3.3.2.1.1
Move x.
-xy2+9x=0(y(xx)+2y-2)
Step 4.2.3.3.2.1.2
Multiply x by x.
-xy2+9x=0(yx2+2y-2)
-xy2+9x=0(yx2+2y-2)
Step 4.2.3.3.2.2
Multiply -2 by 2.
-xy2+9x=0(yx2-4y)
-xy2+9x=0(yx2-4y)
Step 4.2.3.3.3
Multiply 0 by yx2-4y.
-xy2+9x=0
-xy2+9x=0
-xy2+9x=0
-xy2+9x=0
Step 4.3
Solve the equation.
Tap for more steps...
Step 4.3.1
Factor x out of -xy2+9x.
Tap for more steps...
Step 4.3.1.1
Factor x out of -xy2.
x(-1y2)+9x=0
Step 4.3.1.2
Factor x out of 9x.
x(-1y2)+x9=0
Step 4.3.1.3
Factor x out of x(-1y2)+x9.
x(-1y2+9)=0
x(-1y2+9)=0
Step 4.3.2
Rewrite 9 as 32.
x(-1y2+32)=0
Step 4.3.3
Reorder -1y2 and 32.
x(32-1y2)=0
Step 4.3.4
Factor.
Tap for more steps...
Step 4.3.4.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=3 and b=y.
x((3+y)(3-y))=0
Step 4.3.4.2
Remove unnecessary parentheses.
x(3+y)(3-y)=0
x(3+y)(3-y)=0
Step 4.3.5
Divide each term in x(3+y)(3-y)=0 by (3+y)(3-y) and simplify.
Tap for more steps...
Step 4.3.5.1
Divide each term in x(3+y)(3-y)=0 by (3+y)(3-y).
x(3+y)(3-y)(3+y)(3-y)=0(3+y)(3-y)
Step 4.3.5.2
Simplify the left side.
Tap for more steps...
Step 4.3.5.2.1
Cancel the common factor of 3+y.
Tap for more steps...
Step 4.3.5.2.1.1
Cancel the common factor.
x(3+y)(3-y)(3+y)(3-y)=0(3+y)(3-y)
Step 4.3.5.2.1.2
Rewrite the expression.
x(3-y)3-y=0(3+y)(3-y)
x(3-y)3-y=0(3+y)(3-y)
Step 4.3.5.2.2
Cancel the common factor of 3-y.
Tap for more steps...
Step 4.3.5.2.2.1
Cancel the common factor.
x(3-y)3-y=0(3+y)(3-y)
Step 4.3.5.2.2.2
Divide x by 1.
x=0(3+y)(3-y)
x=0(3+y)(3-y)
x=0(3+y)(3-y)
Step 4.3.5.3
Simplify the right side.
Tap for more steps...
Step 4.3.5.3.1
Divide 0 by (3+y)(3-y).
x=0
x=0
x=0
x=0
x=0
Step 5
Solve the function f(x)=3x(x+2)(x-2)(x+2)(x-2) at x=0.
Tap for more steps...
Step 5.1
Replace the variable x with 0 in the expression.
f(0)=3(0)((0)+2)((0)-2)((0)+2)((0)-2)
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 5.2.1.1
Cancel the common factor of 0 and (0)+2.
Tap for more steps...
Step 5.2.1.1.1
Factor 2 out of 3(0)((0)+2)((0)-2).
f(0)=2(3((0)((0)+2)((0)-2)))((0)+2)((0)-2)
Step 5.2.1.1.2
Cancel the common factors.
Tap for more steps...
Step 5.2.1.1.2.1
Factor 2 out of ((0)+2)((0)-2).
f(0)=2(3((0)((0)+2)((0)-2)))2((0+1)((0)-2))
Step 5.2.1.1.2.2
Cancel the common factor.
f(0)=2(3((0)((0)+2)((0)-2)))2((0+1)((0)-2))
Step 5.2.1.1.2.3
Rewrite the expression.
f(0)=3((0)((0)+2)((0)-2))(0+1)((0)-2)
f(0)=3((0)((0)+2)((0)-2))(0+1)((0)-2)
f(0)=3((0)((0)+2)((0)-2))(0+1)((0)-2)
Step 5.2.1.2
Cancel the common factor of 0 and (0)-2.
Tap for more steps...
Step 5.2.1.2.1
Factor 2 out of 3(0)((0)+2)((0)-2).
f(0)=2(3((0)((0)+2)((0)-2)))(0+1)((0)-2)
Step 5.2.1.2.2
Cancel the common factors.
Tap for more steps...
Step 5.2.1.2.2.1
Factor 2 out of (0+1)((0)-2).
f(0)=2(3((0)((0)+2)((0)-2)))2((0+1)(0-1))
Step 5.2.1.2.2.2
Cancel the common factor.
f(0)=2(3((0)((0)+2)((0)-2)))2((0+1)(0-1))
Step 5.2.1.2.2.3
Rewrite the expression.
f(0)=3((0)((0)+2)((0)-2))(0+1)(0-1)
f(0)=3((0)((0)+2)((0)-2))(0+1)(0-1)
f(0)=3((0)((0)+2)((0)-2))(0+1)(0-1)
f(0)=3((0)((0)+2)((0)-2))(0+1)(0-1)
Step 5.2.2
Simplify the numerator.
Tap for more steps...
Step 5.2.2.1
Multiply 3 by 0.
f(0)=0(0+2)(0-2)(0+1)(0-1)
Step 5.2.2.2
Multiply 0 by (0+2)(0-2).
f(0)=0(0+1)(0-1)
f(0)=0(0+1)(0-1)
Step 5.2.3
Simplify the denominator.
Tap for more steps...
Step 5.2.3.1
Rewrite 0 as -1(0).
f(0)=0(-10+1)(0-1)
Step 5.2.3.2
Rewrite 1 as -1(-1).
f(0)=0(-10-1-1)(0-1)
Step 5.2.3.3
Factor -1 out of -10-1-1.
f(0)=0-1((0-1)(0-1))
Step 5.2.3.4
Raise 0-1 to the power of 1.
f(0)=0-1((0-1)(0-1))
Step 5.2.3.5
Raise 0-1 to the power of 1.
f(0)=0-1((0-1)(0-1))
Step 5.2.3.6
Use the power rule aman=am+n to combine exponents.
f(0)=0-1(0-1)1+1
Step 5.2.3.7
Add 1 and 1.
f(0)=0-1(0-1)2
f(0)=0-1(0-1)2
Step 5.2.4
Simplify the denominator.
Tap for more steps...
Step 5.2.4.1
Subtract 1 from 0.
f(0)=0-1(-1)2
Step 5.2.4.2
Raise -1 to the power of 2.
f(0)=0-11
f(0)=0-11
Step 5.2.5
Simplify the expression.
Tap for more steps...
Step 5.2.5.1
Multiply -1 by 1.
f(0)=0-1
Step 5.2.5.2
Divide 0 by -1.
f(0)=0
f(0)=0
Step 5.2.6
The final answer is 0.
0
0
0
Step 6
The horizontal tangent lines are y=0,y=0
y=0,y=0
Step 7
 [x2  12  π  xdx ]