Enter a problem...
Calculus Examples
∫1cos2(3x+1)dxdx
Step 1
Convert from 1cos2(3x+1) to sec2(3x+1).
ddx[∫sec2(3x+1)dxdx]
Step 2
Since d is constant with respect to x, the derivative of ∫sec2(3x+1)dxdx with respect to x is dddx[∫sec2(3x+1)dxx].
dddx[∫sec2(3x+1)dxx]
Step 3
Differentiate using the Product Rule which states that ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=∫sec2(3x+1)dx and g(x)=x.
d(∫sec2(3x+1)dxddx[x]+xddx[∫sec2(3x+1)dx])
Step 4
Step 4.1
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
d(∫sec2(3x+1)dx⋅1+xddx[∫sec2(3x+1)dx])
Step 4.2
Multiply ∫sec2(3x+1)dx by 1.
d(∫sec2(3x+1)dx+xddx[∫sec2(3x+1)dx])
d(∫sec2(3x+1)dx+xddx[∫sec2(3x+1)dx])
Step 5
∫sec2(3x+1)dx is an antiderivative of sec2(3x+1), so by definition ddx[∫sec2(3x+1)dx] is sec2(3x+1).
d(∫sec2(3x+1)dx+xsec2(3x+1))
Step 6
Apply the distributive property.
d∫sec2(3x+1)dx+dxsec2(3x+1)