Calculus Examples

Find the Derivative of the Integral integral from 0 to 1 of 6x-2x^3-x square root of x+3e^x with respect to x
106x-2x3-xx+3exdx106x2x3xx+3exdx
Step 1
Use nax=axnnax=axn to rewrite xx as x12x12.
ddx[106x-2x3-xx12+3exdx]ddx[106x2x3xx12+3exdx]
Step 2
Multiply xx by x12x12 by adding the exponents.
Tap for more steps...
Step 2.1
Move x12x12.
ddx[106x-2x3-(x12x)+3exdx]ddx[106x2x3(x12x)+3exdx]
Step 2.2
Multiply x12x12 by xx.
Tap for more steps...
Step 2.2.1
Raise xx to the power of 11.
ddx[106x-2x3-(x12x1)+3exdx]ddx[106x2x3(x12x1)+3exdx]
Step 2.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
ddx[106x-2x3-x12+1+3exdx]ddx[106x2x3x12+1+3exdx]
ddx[106x-2x3-x12+1+3exdx]ddx[106x2x3x12+1+3exdx]
Step 2.3
Write 11 as a fraction with a common denominator.
ddx[106x-2x3-x12+22+3exdx]ddx[106x2x3x12+22+3exdx]
Step 2.4
Combine the numerators over the common denominator.
ddx[106x-2x3-x1+22+3exdx]ddx[106x2x3x1+22+3exdx]
Step 2.5
Add 11 and 22.
ddx[106x-2x3-x32+3exdx]ddx[106x2x3x32+3exdx]
ddx[106x-2x3-x32+3exdx]ddx[106x2x3x32+3exdx]
Step 3
Once 106x-2x3-x32+3exdx106x2x3x32+3exdx has been evaluated, it will be constant with respect to xx, so the derivative of 106x-2x3-x32+3exdx106x2x3x32+3exdx with respect to xx is 00.
00
 [x2  12  π  xdx ]  x2  12  π  xdx