Enter a problem...
Calculus Examples
∫106x-2x3-x√x+3exdx∫106x−2x3−x√x+3exdx
Step 1
Use n√ax=axnn√ax=axn to rewrite √x√x as x12x12.
ddx[∫106x-2x3-x⋅x12+3exdx]ddx[∫106x−2x3−x⋅x12+3exdx]
Step 2
Step 2.1
Move x12x12.
ddx[∫106x-2x3-(x12x)+3exdx]ddx[∫106x−2x3−(x12x)+3exdx]
Step 2.2
Multiply x12x12 by xx.
Step 2.2.1
Raise xx to the power of 11.
ddx[∫106x-2x3-(x12x1)+3exdx]ddx[∫106x−2x3−(x12x1)+3exdx]
Step 2.2.2
Use the power rule aman=am+naman=am+n to combine exponents.
ddx[∫106x-2x3-x12+1+3exdx]ddx[∫106x−2x3−x12+1+3exdx]
ddx[∫106x-2x3-x12+1+3exdx]ddx[∫106x−2x3−x12+1+3exdx]
Step 2.3
Write 11 as a fraction with a common denominator.
ddx[∫106x-2x3-x12+22+3exdx]ddx[∫106x−2x3−x12+22+3exdx]
Step 2.4
Combine the numerators over the common denominator.
ddx[∫106x-2x3-x1+22+3exdx]ddx[∫106x−2x3−x1+22+3exdx]
Step 2.5
Add 11 and 22.
ddx[∫106x-2x3-x32+3exdx]ddx[∫106x−2x3−x32+3exdx]
ddx[∫106x-2x3-x32+3exdx]ddx[∫106x−2x3−x32+3exdx]
Step 3
Once ∫106x-2x3-x32+3exdx∫106x−2x3−x32+3exdx has been evaluated, it will be constant with respect to xx, so the derivative of ∫106x-2x3-x32+3exdx∫106x−2x3−x32+3exdx with respect to xx is 00.
00