Calculus Examples

Evaluate the Integral integral of (2x^2-9x-35)/((x+1)(x+2)(x+3)) with respect to x
Step 1
Write the fraction using partial fraction decomposition.
Tap for more steps...
Step 1.1
Decompose the fraction and multiply through by the common denominator.
Tap for more steps...
Step 1.1.1
Factor by grouping.
Tap for more steps...
Step 1.1.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 1.1.1.1.1
Factor out of .
Step 1.1.1.1.2
Rewrite as plus
Step 1.1.1.1.3
Apply the distributive property.
Step 1.1.1.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 1.1.1.2.1
Group the first two terms and the last two terms.
Step 1.1.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 1.1.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 1.1.2
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.1.3
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.1.4
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 1.1.5
Multiply each fraction in the equation by the denominator of the original expression. In this case, the denominator is .
Step 1.1.6
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 1.1.6.1
Cancel the common factor of .
Tap for more steps...
Step 1.1.6.1.1
Cancel the common factor.
Step 1.1.6.1.2
Rewrite the expression.
Step 1.1.6.2
Cancel the common factor of .
Tap for more steps...
Step 1.1.6.2.1
Cancel the common factor.
Step 1.1.6.2.2
Rewrite the expression.
Step 1.1.6.3
Cancel the common factor of .
Tap for more steps...
Step 1.1.6.3.1
Cancel the common factor.
Step 1.1.6.3.2
Divide by .
Step 1.1.7
Expand using the FOIL Method.
Tap for more steps...
Step 1.1.7.1
Apply the distributive property.
Step 1.1.7.2
Apply the distributive property.
Step 1.1.7.3
Apply the distributive property.
Step 1.1.8
Simplify and combine like terms.
Tap for more steps...
Step 1.1.8.1
Simplify each term.
Tap for more steps...
Step 1.1.8.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.8.1.1.1
Move .
Step 1.1.8.1.1.2
Multiply by .
Step 1.1.8.1.2
Multiply by .
Step 1.1.8.1.3
Multiply by .
Step 1.1.8.2
Add and .
Step 1.1.9
Simplify each term.
Tap for more steps...
Step 1.1.9.1
Cancel the common factor of .
Tap for more steps...
Step 1.1.9.1.1
Cancel the common factor.
Step 1.1.9.1.2
Divide by .
Step 1.1.9.2
Apply the distributive property.
Step 1.1.9.3
Move to the left of .
Step 1.1.9.4
Expand using the FOIL Method.
Tap for more steps...
Step 1.1.9.4.1
Apply the distributive property.
Step 1.1.9.4.2
Apply the distributive property.
Step 1.1.9.4.3
Apply the distributive property.
Step 1.1.9.5
Simplify and combine like terms.
Tap for more steps...
Step 1.1.9.5.1
Simplify each term.
Tap for more steps...
Step 1.1.9.5.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.9.5.1.1.1
Move .
Step 1.1.9.5.1.1.2
Multiply by .
Step 1.1.9.5.1.2
Move to the left of .
Step 1.1.9.5.1.3
Multiply by .
Step 1.1.9.5.2
Add and .
Step 1.1.9.6
Cancel the common factor of .
Tap for more steps...
Step 1.1.9.6.1
Cancel the common factor.
Step 1.1.9.6.2
Divide by .
Step 1.1.9.7
Apply the distributive property.
Step 1.1.9.8
Multiply by .
Step 1.1.9.9
Expand using the FOIL Method.
Tap for more steps...
Step 1.1.9.9.1
Apply the distributive property.
Step 1.1.9.9.2
Apply the distributive property.
Step 1.1.9.9.3
Apply the distributive property.
Step 1.1.9.10
Simplify and combine like terms.
Tap for more steps...
Step 1.1.9.10.1
Simplify each term.
Tap for more steps...
Step 1.1.9.10.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.9.10.1.1.1
Move .
Step 1.1.9.10.1.1.2
Multiply by .
Step 1.1.9.10.1.2
Move to the left of .
Step 1.1.9.10.1.3
Move to the left of .
Step 1.1.9.10.2
Add and .
Step 1.1.9.11
Cancel the common factor of .
Tap for more steps...
Step 1.1.9.11.1
Cancel the common factor.
Step 1.1.9.11.2
Divide by .
Step 1.1.9.12
Apply the distributive property.
Step 1.1.9.13
Multiply by .
Step 1.1.9.14
Expand using the FOIL Method.
Tap for more steps...
Step 1.1.9.14.1
Apply the distributive property.
Step 1.1.9.14.2
Apply the distributive property.
Step 1.1.9.14.3
Apply the distributive property.
Step 1.1.9.15
Simplify and combine like terms.
Tap for more steps...
Step 1.1.9.15.1
Simplify each term.
Tap for more steps...
Step 1.1.9.15.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.1.9.15.1.1.1
Move .
Step 1.1.9.15.1.1.2
Multiply by .
Step 1.1.9.15.1.2
Move to the left of .
Step 1.1.9.15.1.3
Move to the left of .
Step 1.1.9.15.2
Add and .
Step 1.1.10
Simplify the expression.
Tap for more steps...
Step 1.1.10.1
Move .
Step 1.1.10.2
Reorder and .
Step 1.1.10.3
Move .
Step 1.1.10.4
Move .
Step 1.1.10.5
Move .
Step 1.1.10.6
Move .
Step 1.1.10.7
Move .
Step 1.2
Create equations for the partial fraction variables and use them to set up a system of equations.
Tap for more steps...
Step 1.2.1
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 1.2.2
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 1.2.3
Create an equation for the partial fraction variables by equating the coefficients of the terms not containing . For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 1.2.4
Set up the system of equations to find the coefficients of the partial fractions.
Step 1.3
Solve the system of equations.
Tap for more steps...
Step 1.3.1
Solve for in .
Tap for more steps...
Step 1.3.1.1
Rewrite the equation as .
Step 1.3.1.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 1.3.1.2.1
Subtract from both sides of the equation.
Step 1.3.1.2.2
Subtract from both sides of the equation.
Step 1.3.2
Replace all occurrences of with in each equation.
Tap for more steps...
Step 1.3.2.1
Replace all occurrences of in with .
Step 1.3.2.2
Simplify the right side.
Tap for more steps...
Step 1.3.2.2.1
Simplify .
Tap for more steps...
Step 1.3.2.2.1.1
Simplify each term.
Tap for more steps...
Step 1.3.2.2.1.1.1
Apply the distributive property.
Step 1.3.2.2.1.1.2
Simplify.
Tap for more steps...
Step 1.3.2.2.1.1.2.1
Multiply by .
Step 1.3.2.2.1.1.2.2
Multiply by .
Step 1.3.2.2.1.1.2.3
Multiply by .
Step 1.3.2.2.1.2
Simplify by adding terms.
Tap for more steps...
Step 1.3.2.2.1.2.1
Add and .
Step 1.3.2.2.1.2.2
Add and .
Step 1.3.2.3
Replace all occurrences of in with .
Step 1.3.2.4
Simplify the right side.
Tap for more steps...
Step 1.3.2.4.1
Simplify .
Tap for more steps...
Step 1.3.2.4.1.1
Simplify each term.
Tap for more steps...
Step 1.3.2.4.1.1.1
Apply the distributive property.
Step 1.3.2.4.1.1.2
Simplify.
Tap for more steps...
Step 1.3.2.4.1.1.2.1
Multiply by .
Step 1.3.2.4.1.1.2.2
Multiply by .
Step 1.3.2.4.1.1.2.3
Multiply by .
Step 1.3.2.4.1.2
Simplify by adding terms.
Tap for more steps...
Step 1.3.2.4.1.2.1
Add and .
Step 1.3.2.4.1.2.2
Add and .
Step 1.3.3
Solve for in .
Tap for more steps...
Step 1.3.3.1
Rewrite the equation as .
Step 1.3.3.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 1.3.3.2.1
Subtract from both sides of the equation.
Step 1.3.3.2.2
Add to both sides of the equation.
Step 1.3.3.2.3
Subtract from .
Step 1.3.3.3
Divide each term in by and simplify.
Tap for more steps...
Step 1.3.3.3.1
Divide each term in by .
Step 1.3.3.3.2
Simplify the left side.
Tap for more steps...
Step 1.3.3.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.3.3.3.2.1.1
Cancel the common factor.
Step 1.3.3.3.2.1.2
Divide by .
Step 1.3.3.3.3
Simplify the right side.
Tap for more steps...
Step 1.3.3.3.3.1
Simplify each term.
Tap for more steps...
Step 1.3.3.3.3.1.1
Dividing two negative values results in a positive value.
Step 1.3.3.3.3.1.2
Move the negative in front of the fraction.
Step 1.3.4
Replace all occurrences of with in each equation.
Tap for more steps...
Step 1.3.4.1
Replace all occurrences of in with .
Step 1.3.4.2
Simplify the right side.
Tap for more steps...
Step 1.3.4.2.1
Simplify .
Tap for more steps...
Step 1.3.4.2.1.1
Simplify each term.
Tap for more steps...
Step 1.3.4.2.1.1.1
Apply the distributive property.
Step 1.3.4.2.1.1.2
Multiply .
Tap for more steps...
Step 1.3.4.2.1.1.2.1
Multiply by .
Step 1.3.4.2.1.1.2.2
Multiply by .
Step 1.3.4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 1.3.4.2.1.3
Combine and .
Step 1.3.4.2.1.4
Combine the numerators over the common denominator.
Step 1.3.4.2.1.5
Simplify the numerator.
Tap for more steps...
Step 1.3.4.2.1.5.1
Multiply by .
Step 1.3.4.2.1.5.2
Subtract from .
Step 1.3.4.2.1.6
Move the negative in front of the fraction.
Step 1.3.4.2.1.7
To write as a fraction with a common denominator, multiply by .
Step 1.3.4.2.1.8
Combine and .
Step 1.3.4.2.1.9
Combine the numerators over the common denominator.
Step 1.3.4.2.1.10
Combine the numerators over the common denominator.
Step 1.3.4.2.1.11
Multiply by .
Step 1.3.4.2.1.12
Subtract from .
Step 1.3.4.2.1.13
Rewrite as .
Step 1.3.4.2.1.14
Factor out of .
Step 1.3.4.2.1.15
Factor out of .
Step 1.3.4.2.1.16
Move the negative in front of the fraction.
Step 1.3.4.3
Replace all occurrences of in with .
Step 1.3.4.4
Simplify the right side.
Tap for more steps...
Step 1.3.4.4.1
Simplify .
Tap for more steps...
Step 1.3.4.4.1.1
Simplify each term.
Tap for more steps...
Step 1.3.4.4.1.1.1
Apply the distributive property.
Step 1.3.4.4.1.1.2
Multiply .
Tap for more steps...
Step 1.3.4.4.1.1.2.1
Multiply by .
Step 1.3.4.4.1.1.2.2
Multiply by .
Step 1.3.4.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 1.3.4.4.1.3
Combine and .
Step 1.3.4.4.1.4
Combine the numerators over the common denominator.
Step 1.3.4.4.1.5
Simplify the numerator.
Tap for more steps...
Step 1.3.4.4.1.5.1
Multiply by .
Step 1.3.4.4.1.5.2
Subtract from .
Step 1.3.4.4.1.6
Move the negative in front of the fraction.
Step 1.3.4.4.1.7
To write as a fraction with a common denominator, multiply by .
Step 1.3.4.4.1.8
Combine and .
Step 1.3.4.4.1.9
Combine the numerators over the common denominator.
Step 1.3.4.4.1.10
Combine the numerators over the common denominator.
Step 1.3.4.4.1.11
Multiply by .
Step 1.3.4.4.1.12
Subtract from .
Step 1.3.4.4.1.13
Rewrite as .
Step 1.3.4.4.1.14
Factor out of .
Step 1.3.4.4.1.15
Factor out of .
Step 1.3.4.4.1.16
Move the negative in front of the fraction.
Step 1.3.5
Solve for in .
Tap for more steps...
Step 1.3.5.1
Rewrite the equation as .
Step 1.3.5.2
Multiply both sides of the equation by .
Step 1.3.5.3
Simplify both sides of the equation.
Tap for more steps...
Step 1.3.5.3.1
Simplify the left side.
Tap for more steps...
Step 1.3.5.3.1.1
Simplify .
Tap for more steps...
Step 1.3.5.3.1.1.1
Cancel the common factor of .
Tap for more steps...
Step 1.3.5.3.1.1.1.1
Move the leading negative in into the numerator.
Step 1.3.5.3.1.1.1.2
Factor out of .
Step 1.3.5.3.1.1.1.3
Cancel the common factor.
Step 1.3.5.3.1.1.1.4
Rewrite the expression.
Step 1.3.5.3.1.1.2
Multiply.
Tap for more steps...
Step 1.3.5.3.1.1.2.1
Multiply by .
Step 1.3.5.3.1.1.2.2
Multiply by .
Step 1.3.5.3.2
Simplify the right side.
Tap for more steps...
Step 1.3.5.3.2.1
Multiply by .
Step 1.3.5.4
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 1.3.5.4.1
Subtract from both sides of the equation.
Step 1.3.5.4.2
Subtract from .
Step 1.3.5.5
Divide each term in by and simplify.
Tap for more steps...
Step 1.3.5.5.1
Divide each term in by .
Step 1.3.5.5.2
Simplify the left side.
Tap for more steps...
Step 1.3.5.5.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.3.5.5.2.1.1
Cancel the common factor.
Step 1.3.5.5.2.1.2
Divide by .
Step 1.3.5.5.3
Simplify the right side.
Tap for more steps...
Step 1.3.5.5.3.1
Divide by .
Step 1.3.6
Replace all occurrences of with in each equation.
Tap for more steps...
Step 1.3.6.1
Replace all occurrences of in with .
Step 1.3.6.2
Simplify the right side.
Tap for more steps...
Step 1.3.6.2.1
Simplify .
Tap for more steps...
Step 1.3.6.2.1.1
Simplify the numerator.
Tap for more steps...
Step 1.3.6.2.1.1.1
Multiply by .
Step 1.3.6.2.1.1.2
Subtract from .
Step 1.3.6.2.1.2
Simplify the expression.
Tap for more steps...
Step 1.3.6.2.1.2.1
Divide by .
Step 1.3.6.2.1.2.2
Multiply by .
Step 1.3.6.3
Replace all occurrences of in with .
Step 1.3.6.4
Simplify the right side.
Tap for more steps...
Step 1.3.6.4.1
Simplify .
Tap for more steps...
Step 1.3.6.4.1.1
Combine the numerators over the common denominator.
Step 1.3.6.4.1.2
Simplify the expression.
Tap for more steps...
Step 1.3.6.4.1.2.1
Multiply by .
Step 1.3.6.4.1.2.2
Subtract from .
Step 1.3.6.4.1.2.3
Divide by .
Step 1.3.7
List all of the solutions.
Step 1.4
Replace each of the partial fraction coefficients in with the values found for , , and .
Step 1.5
Move the negative in front of the fraction.
Step 2
Split the single integral into multiple integrals.
Step 3
Since is constant with respect to , move out of the integral.
Step 4
Since is constant with respect to , move out of the integral.
Step 5
Multiply by .
Step 6
Let . Then . Rewrite using and .
Tap for more steps...
Step 6.1
Let . Find .
Tap for more steps...
Step 6.1.1
Differentiate .
Step 6.1.2
By the Sum Rule, the derivative of with respect to is .
Step 6.1.3
Differentiate using the Power Rule which states that is where .
Step 6.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 6.1.5
Add and .
Step 6.2
Rewrite the problem using and .
Step 7
The integral of with respect to is .
Step 8
Since is constant with respect to , move out of the integral.
Step 9
Let . Then . Rewrite using and .
Tap for more steps...
Step 9.1
Let . Find .
Tap for more steps...
Step 9.1.1
Differentiate .
Step 9.1.2
By the Sum Rule, the derivative of with respect to is .
Step 9.1.3
Differentiate using the Power Rule which states that is where .
Step 9.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 9.1.5
Add and .
Step 9.2
Rewrite the problem using and .
Step 10
The integral of with respect to is .
Step 11
Since is constant with respect to , move out of the integral.
Step 12
Let . Then . Rewrite using and .
Tap for more steps...
Step 12.1
Let . Find .
Tap for more steps...
Step 12.1.1
Differentiate .
Step 12.1.2
By the Sum Rule, the derivative of with respect to is .
Step 12.1.3
Differentiate using the Power Rule which states that is where .
Step 12.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 12.1.5
Add and .
Step 12.2
Rewrite the problem using and .
Step 13
The integral of with respect to is .
Step 14
Simplify.
Step 15
Substitute back in for each integration substitution variable.
Tap for more steps...
Step 15.1
Replace all occurrences of with .
Step 15.2
Replace all occurrences of with .
Step 15.3
Replace all occurrences of with .