Enter a problem...
Calculus Examples
e5x+e-x
Step 1
Write e5x+e-x as a function.
f(x)=e5x+e-x
Step 2
Step 2.1
Find the first derivative.
Step 2.1.1
By the Sum Rule, the derivative of e5x+e-x with respect to x is ddx[e5x]+ddx[e-x].
ddx[e5x]+ddx[e-x]
Step 2.1.2
Evaluate ddx[e5x].
Step 2.1.2.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ex and g(x)=5x.
Step 2.1.2.1.1
To apply the Chain Rule, set u1 as 5x.
ddu1[eu1]ddx[5x]+ddx[e-x]
Step 2.1.2.1.2
Differentiate using the Exponential Rule which states that ddu1[au1] is au1ln(a) where a=e.
eu1ddx[5x]+ddx[e-x]
Step 2.1.2.1.3
Replace all occurrences of u1 with 5x.
e5xddx[5x]+ddx[e-x]
e5xddx[5x]+ddx[e-x]
Step 2.1.2.2
Since 5 is constant with respect to x, the derivative of 5x with respect to x is 5ddx[x].
e5x(5ddx[x])+ddx[e-x]
Step 2.1.2.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
e5x(5⋅1)+ddx[e-x]
Step 2.1.2.4
Multiply 5 by 1.
e5x⋅5+ddx[e-x]
Step 2.1.2.5
Move 5 to the left of e5x.
5e5x+ddx[e-x]
5e5x+ddx[e-x]
Step 2.1.3
Evaluate ddx[e-x].
Step 2.1.3.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ex and g(x)=-x.
Step 2.1.3.1.1
To apply the Chain Rule, set u2 as -x.
5e5x+ddu2[eu2]ddx[-x]
Step 2.1.3.1.2
Differentiate using the Exponential Rule which states that ddu2[au2] is au2ln(a) where a=e.
5e5x+eu2ddx[-x]
Step 2.1.3.1.3
Replace all occurrences of u2 with -x.
5e5x+e-xddx[-x]
5e5x+e-xddx[-x]
Step 2.1.3.2
Since -1 is constant with respect to x, the derivative of -x with respect to x is -ddx[x].
5e5x+e-x(-ddx[x])
Step 2.1.3.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
5e5x+e-x(-1⋅1)
Step 2.1.3.4
Multiply -1 by 1.
5e5x+e-x⋅-1
Step 2.1.3.5
Move -1 to the left of e-x.
5e5x-1⋅e-x
Step 2.1.3.6
Rewrite -1e-x as -e-x.
f′(x)=5e5x-e-x
f′(x)=5e5x-e-x
f′(x)=5e5x-e-x
Step 2.2
The first derivative of f(x) with respect to x is 5e5x-e-x.
5e5x-e-x
5e5x-e-x
Step 3
Step 3.1
Set the first derivative equal to 0.
5e5x-e-x=0
Step 3.2
Move -e-x to the right side of the equation by adding it to both sides.
5e5x=e-x
Step 3.3
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(5e5x)=ln(e-x)
Step 3.4
Expand the left side.
Step 3.4.1
Rewrite ln(5e5x) as ln(5)+ln(e5x).
ln(5)+ln(e5x)=ln(e-x)
Step 3.4.2
Expand ln(e5x) by moving 5x outside the logarithm.
ln(5)+5xln(e)=ln(e-x)
Step 3.4.3
The natural logarithm of e is 1.
ln(5)+5x⋅1=ln(e-x)
Step 3.4.4
Multiply 5 by 1.
ln(5)+5x=ln(e-x)
ln(5)+5x=ln(e-x)
Step 3.5
Expand the right side.
Step 3.5.1
Expand ln(e-x) by moving -x outside the logarithm.
ln(5)+5x=-xln(e)
Step 3.5.2
The natural logarithm of e is 1.
ln(5)+5x=-x⋅1
Step 3.5.3
Multiply -1 by 1.
ln(5)+5x=-x
ln(5)+5x=-x
Step 3.6
Move all terms containing x to the left side of the equation.
Step 3.6.1
Add x to both sides of the equation.
ln(5)+5x+x=0
Step 3.6.2
Add 5x and x.
ln(5)+6x=0
ln(5)+6x=0
Step 3.7
Subtract ln(5) from both sides of the equation.
6x=-ln(5)
Step 3.8
Divide each term in 6x=-ln(5) by 6 and simplify.
Step 3.8.1
Divide each term in 6x=-ln(5) by 6.
6x6=-ln(5)6
Step 3.8.2
Simplify the left side.
Step 3.8.2.1
Cancel the common factor of 6.
Step 3.8.2.1.1
Cancel the common factor.
6x6=-ln(5)6
Step 3.8.2.1.2
Divide x by 1.
x=-ln(5)6
x=-ln(5)6
x=-ln(5)6
Step 3.8.3
Simplify the right side.
Step 3.8.3.1
Move the negative in front of the fraction.
x=-ln(5)6
x=-ln(5)6
x=-ln(5)6
x=-ln(5)6
Step 4
The values which make the derivative equal to 0 are -ln(5)6.
-ln(5)6
Step 5
After finding the point that makes the derivative f′(x)=5e5x-e-x equal to 0 or undefined, the interval to check where f(x)=e5x+e-x is increasing and where it is decreasing is (-∞,-ln(5)6)∪(-ln(5)6,∞).
(-∞,-ln(5)6)∪(-ln(5)6,∞)
Step 6
Step 6.1
Replace the variable x with -1.26823965 in the expression.
f′(-1.26823965)=5e5(-1.26823965)-e-(-1.26823965)
Step 6.2
Simplify the result.
Step 6.2.1
Simplify each term.
Step 6.2.1.1
Multiply 5 by -1.26823965.
f′(-1.26823965)=5e-6.34119826-e-(-1.26823965)
Step 6.2.1.2
Rewrite the expression using the negative exponent rule b-n=1bn.
f′(-1.26823965)=5(1e6.34119826)-e-(-1.26823965)
Step 6.2.1.3
Combine 5 and 1e6.34119826.
f′(-1.26823965)=5e6.34119826-e-(-1.26823965)
Step 6.2.1.4
Multiply -1 by -1.26823965.
f′(-1.26823965)=5e6.34119826-e1.26823965
f′(-1.26823965)=5e6.34119826-e1.26823965
Step 6.2.2
The final answer is 5e6.34119826-e1.26823965.
5e6.34119826-e1.26823965
5e6.34119826-e1.26823965
Step 6.3
Simplify.
-3.54577878
Step 6.4
At x=-1.26823965 the derivative is -3.54577878. Since this is negative, the function is decreasing on (-∞,-ln(5)6).
Decreasing on (-∞,-ln(5)6) since f′(x)<0
Decreasing on (-∞,-ln(5)6) since f′(x)<0
Step 7
Step 7.1
Replace the variable x with 0.73176034 in the expression.
f′(0.73176034)=5e5(0.73176034)-e-(0.73176034)
Step 7.2
Simplify the result.
Step 7.2.1
Simplify each term.
Step 7.2.1.1
Multiply 5 by 0.73176034.
f′(0.73176034)=5e3.65880173-e-(0.73176034)
Step 7.2.1.2
Multiply -1 by 0.73176034.
f′(0.73176034)=5e3.65880173-e-0.73176034
Step 7.2.1.3
Rewrite the expression using the negative exponent rule b-n=1bn.
f′(0.73176034)=5e3.65880173-1e0.73176034
f′(0.73176034)=5e3.65880173-1e0.73176034
Step 7.2.2
The final answer is 5e3.65880173-1e0.73176034.
5e3.65880173-1e0.73176034
5e3.65880173-1e0.73176034
Step 7.3
Simplify.
193.59296235
Step 7.4
At x=0.73176034 the derivative is 193.59296235. Since this is positive, the function is increasing on (-ln(5)6,∞).
Increasing on (-ln(5)6,∞) since f′(x)>0
Increasing on (-ln(5)6,∞) since f′(x)>0
Step 8
List the intervals on which the function is increasing and decreasing.
Increasing on: (-ln(5)6,∞)
Decreasing on: (-∞,-ln(5)6)
Step 9